Cargando…
Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings
Advances in signal processing and machine learning have expedited electroencephalogram (EEG)-based emotion recognition research, and numerous EEG signal features have been investigated to detect or characterize human emotions. However, most studies in this area have used relatively small monocentric...
Autores principales: | Yuvaraj, Rajamanickam, Thagavel, Prasanth, Thomas, John, Fogarty, Jack, Ali, Farhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867328/ https://www.ncbi.nlm.nih.gov/pubmed/36679710 http://dx.doi.org/10.3390/s23020915 |
Ejemplares similares
-
Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
por: Li, Mi, et al.
Publicado: (2018) -
Emotional State Classification from MUSIC-Based Features of Multichannel EEG Signals
por: Hossain, Sakib Abrar, et al.
Publicado: (2023) -
Emotion Recognition Based on Multichannel Physiological Signals with Comprehensive Nonlinear Processing
por: Zhang, Xingxing, et al.
Publicado: (2018) -
EEG Feature Extraction and Data Augmentation in Emotion Recognition
por: Kalashami, Mahsa Pourhosein, et al.
Publicado: (2022) -
Emotion Recognition from Spatio-Temporal Representation of EEG Signals via 3D-CNN with Ensemble Learning Techniques
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2023)