Cargando…
Ring-Split: Deadlock-Free Routing Algorithm for Circulant Networks-on-Chip
This article considers the usage of circulant topologies as a promising deadlock-free topology for networks-on-chip (NoCs). A new high-level model, Newxim, for the exploration of NoCs with any topology is presented. Two methods for solving the problem of cyclic dependencies in circulant topologies,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867377/ https://www.ncbi.nlm.nih.gov/pubmed/36677202 http://dx.doi.org/10.3390/mi14010141 |
Sumario: | This article considers the usage of circulant topologies as a promising deadlock-free topology for networks-on-chip (NoCs). A new high-level model, Newxim, for the exploration of NoCs with any topology is presented. Two methods for solving the problem of cyclic dependencies in circulant topologies, which limit their applications for NoCs due to the increased possibility of deadlocks, are proposed. The first method of dealing with deadlocks is universal and applicable to any topology; it is based on the idea of bypassing blocked sections of the network on an acyclic subnetwork. The second method—Ring-Split—takes into account the features of circulant topologies. The results of high-level modeling and comparison of the peak throughput of NoCs for circulant and mesh topologies using deadlock-free routing algorithms are presented. It was shown that a new approach for routing in circulants (compared to mesh topology) shows up to 59% better network throughput with a uniform distribution of network load. |
---|