Cargando…
Enhancing Mask Transformer with Auxiliary Convolution Layers for Semantic Segmentation
Transformer-based semantic segmentation methods have achieved excellent performance in recent years. Mask2Former is one of the well-known transformer-based methods which unifies common image segmentation into a universal model. However, it performs relatively poorly in obtaining local features and s...
Autores principales: | Xia, Zhengyu, Kim, Joohee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867439/ https://www.ncbi.nlm.nih.gov/pubmed/36679377 http://dx.doi.org/10.3390/s23020581 |
Ejemplares similares
-
Semantic segmentation in medical images through transfused convolution and transformer networks
por: Dhamija, Tashvik, et al.
Publicado: (2022) -
Rethinking 1D convolution for lightweight semantic segmentation
por: Zhang, Chunyu, et al.
Publicado: (2023) -
Using AAEHS-Net as an Attention-Based Auxiliary Extraction and Hybrid Subsampled Network for Semantic Segmentation
por: Zhao, Shan, et al.
Publicado: (2022) -
A Novel Upsampling and Context Convolution for Image Semantic Segmentation
por: Sediqi, Khwaja Monib, et al.
Publicado: (2021) -
Liver segmentation in CT imaging with enhanced mask region-based convolutional neural networks
por: Chen, Xiaowen, et al.
Publicado: (2021)