Cargando…
A Machine Learning Method for Predicting Corrosion Weight Gain of Uranium and Uranium Alloys
As an irreplaceable structural and functional material in strategic equipment, uranium and uranium alloys are generally susceptible to corrosion reactions during service, and predicting corrosion behavior has important research significance. There have been substantial studies conducted on metal cor...
Autores principales: | Wang, Xiaoyuan, Zhang, Wanying, Zhang, Weidong, Ai, Yibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867464/ https://www.ncbi.nlm.nih.gov/pubmed/36676368 http://dx.doi.org/10.3390/ma16020631 |
Ejemplares similares
-
Microscale Electrochemical Corrosion of Uranium Oxide Particles
por: Son, Jiyoung, et al.
Publicado: (2023) -
Uranium–nitride chemistry: uranium–uranium electronic communication mediated by nitride bridges
por: King, David M., et al.
Publicado: (2022) -
Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour
por: Martin, T. L., et al.
Publicado: (2016) -
Laboratory simulation of uranium metal corrosion in different soil moisture regimes
por: Zhang, Qinku, et al.
Publicado: (2020) -
Superconductivity in a uranium containing high entropy alloy
por: Nelson, W. L., et al.
Publicado: (2020)