Cargando…
ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN
Neuroblastoma (NB) is characterized by several malignant phenotypes that are difficult to treat effectively without combination therapy. The therapeutic implication of mitochondrial ClpXP protease ClpP and ClpX has been verified in several malignancies, but is unknown in NB. Firstly, we observed a s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867473/ https://www.ncbi.nlm.nih.gov/pubmed/36675163 http://dx.doi.org/10.3390/ijms24021649 |
_version_ | 1784876350825299968 |
---|---|
author | Wu, Jian-Ching Huang, Chao-Cheng Wang, Pei-Wen Chen, Ting-Ya Hsu, Wen-Ming Chuang, Jiin-Haur Chuang, Hui-Ching |
author_facet | Wu, Jian-Ching Huang, Chao-Cheng Wang, Pei-Wen Chen, Ting-Ya Hsu, Wen-Ming Chuang, Jiin-Haur Chuang, Hui-Ching |
author_sort | Wu, Jian-Ching |
collection | PubMed |
description | Neuroblastoma (NB) is characterized by several malignant phenotypes that are difficult to treat effectively without combination therapy. The therapeutic implication of mitochondrial ClpXP protease ClpP and ClpX has been verified in several malignancies, but is unknown in NB. Firstly, we observed a significant increase in ClpP and ClpX expression in immature and mature ganglion cells as compared to more malignant neuroblasts and less malignant Schwannian-stroma-dominant cell types in human neuroblastoma tissues. We used ONC201 targeting ClpXP to treat NB cells, and found a significant suppression of mitochondrial protease, i.e., ClpP and ClpX, expression and downregulation of mitochondrial respiratory chain subunits SDHB and NDUFS1. The latter was associated with a state of energy depletion, increased reactive oxygen species, and decreased mitochondrial membrane potential, consequently promoting apoptosis and suppressing cell growth of NB. Treatment of NB cells with ONC201 as well as the genetic attenuation of ClpP and ClpX through specific short interfering RNA (siRNA) resulted in the significant upregulation of the tumor suppressor alpha thalassemia/mental retardation X-linked (ATRX) and promotion of neurite outgrowth, implicating mitochondrial ClpXP proteases in MYCN-amplified NB cell differentiation. Furthermore, ONC201 treatment significantly decreased MYCN protein expression and suppressed tumor formation with the reactivation of ATRX expression in MYCN-amplified NB-cell-derived xenograft tumors. Taken together, ONC201 could be the potential agent to provide diversified therapeutic application in NB, particularly in NB with MYCN amplification. |
format | Online Article Text |
id | pubmed-9867473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98674732023-01-22 ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN Wu, Jian-Ching Huang, Chao-Cheng Wang, Pei-Wen Chen, Ting-Ya Hsu, Wen-Ming Chuang, Jiin-Haur Chuang, Hui-Ching Int J Mol Sci Article Neuroblastoma (NB) is characterized by several malignant phenotypes that are difficult to treat effectively without combination therapy. The therapeutic implication of mitochondrial ClpXP protease ClpP and ClpX has been verified in several malignancies, but is unknown in NB. Firstly, we observed a significant increase in ClpP and ClpX expression in immature and mature ganglion cells as compared to more malignant neuroblasts and less malignant Schwannian-stroma-dominant cell types in human neuroblastoma tissues. We used ONC201 targeting ClpXP to treat NB cells, and found a significant suppression of mitochondrial protease, i.e., ClpP and ClpX, expression and downregulation of mitochondrial respiratory chain subunits SDHB and NDUFS1. The latter was associated with a state of energy depletion, increased reactive oxygen species, and decreased mitochondrial membrane potential, consequently promoting apoptosis and suppressing cell growth of NB. Treatment of NB cells with ONC201 as well as the genetic attenuation of ClpP and ClpX through specific short interfering RNA (siRNA) resulted in the significant upregulation of the tumor suppressor alpha thalassemia/mental retardation X-linked (ATRX) and promotion of neurite outgrowth, implicating mitochondrial ClpXP proteases in MYCN-amplified NB cell differentiation. Furthermore, ONC201 treatment significantly decreased MYCN protein expression and suppressed tumor formation with the reactivation of ATRX expression in MYCN-amplified NB-cell-derived xenograft tumors. Taken together, ONC201 could be the potential agent to provide diversified therapeutic application in NB, particularly in NB with MYCN amplification. MDPI 2023-01-13 /pmc/articles/PMC9867473/ /pubmed/36675163 http://dx.doi.org/10.3390/ijms24021649 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Jian-Ching Huang, Chao-Cheng Wang, Pei-Wen Chen, Ting-Ya Hsu, Wen-Ming Chuang, Jiin-Haur Chuang, Hui-Ching ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN |
title | ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN |
title_full | ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN |
title_fullStr | ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN |
title_full_unstemmed | ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN |
title_short | ONC201 Suppresses Neuroblastoma Growth by Interrupting Mitochondrial Function and Reactivating Nuclear ATRX Expression While Decreasing MYCN |
title_sort | onc201 suppresses neuroblastoma growth by interrupting mitochondrial function and reactivating nuclear atrx expression while decreasing mycn |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867473/ https://www.ncbi.nlm.nih.gov/pubmed/36675163 http://dx.doi.org/10.3390/ijms24021649 |
work_keys_str_mv | AT wujianching onc201suppressesneuroblastomagrowthbyinterruptingmitochondrialfunctionandreactivatingnuclearatrxexpressionwhiledecreasingmycn AT huangchaocheng onc201suppressesneuroblastomagrowthbyinterruptingmitochondrialfunctionandreactivatingnuclearatrxexpressionwhiledecreasingmycn AT wangpeiwen onc201suppressesneuroblastomagrowthbyinterruptingmitochondrialfunctionandreactivatingnuclearatrxexpressionwhiledecreasingmycn AT chentingya onc201suppressesneuroblastomagrowthbyinterruptingmitochondrialfunctionandreactivatingnuclearatrxexpressionwhiledecreasingmycn AT hsuwenming onc201suppressesneuroblastomagrowthbyinterruptingmitochondrialfunctionandreactivatingnuclearatrxexpressionwhiledecreasingmycn AT chuangjiinhaur onc201suppressesneuroblastomagrowthbyinterruptingmitochondrialfunctionandreactivatingnuclearatrxexpressionwhiledecreasingmycn AT chuanghuiching onc201suppressesneuroblastomagrowthbyinterruptingmitochondrialfunctionandreactivatingnuclearatrxexpressionwhiledecreasingmycn |