Cargando…
Machine Learning Models for the Automatic Detection of Exercise Thresholds in Cardiopulmonary Exercising Tests: From Regression to Generation to Explanation
The cardiopulmonary exercise test (CPET) constitutes a gold standard for the assessment of an individual’s cardiovascular fitness. A trend is emerging for the development of new machine-learning techniques applied to the automatic process of CPET data. Some of these focus on the precise task of dete...
Autor principal: | Zignoli, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867502/ https://www.ncbi.nlm.nih.gov/pubmed/36679622 http://dx.doi.org/10.3390/s23020826 |
Ejemplares similares
-
A Machine Learning Approach to the Interpretation of Cardiopulmonary Exercise Tests: Development and Validation
por: Inbar, Or, et al.
Publicado: (2021) -
Cardiopulmonary Exercise Testing
por: Howard, Luke, et al.
Publicado: (2012) -
Cardiopulmonary Exercise Testing
por: Marciniuk, Darcy D., et al.
Publicado: (2013) -
Utilizing Machine Learning Techniques to Predict the Efficacy of Aerobic Exercise Intervention on Young Hypertensive Patients Based on Cardiopulmonary Exercise Testing
por: Huang, Fangwan, et al.
Publicado: (2021) -
Integrative Interpretation of Cardiopulmonary Exercise Tests for Cardiovascular Outcome Prediction: A Machine Learning Approach
por: Cauwenberghs, Nicholas, et al.
Publicado: (2023)