Cargando…

Investigation of diverse biosynthetic secondary metabolites gene clusters using genome mining of indigenous Streptomyces strains isolated from saline soils in Iran

BACKGROUND AND OBJECTIVES: Bioactive secondary metabolites are the products of microbial communities adapting to environmental challenges, which have yet remained anonymous. As a result of demands in the pharmaceutical, agricultural, and food industries, microbial metabolites should be investigated....

Descripción completa

Detalles Bibliográficos
Autores principales: Khoshakhlagh, Amin, Aghaei, Seyed Soheil, Abroun, Saeid, Soleimani, Mohammad, Zolfaghari, Mohammad Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tehran University of Medical Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867626/
https://www.ncbi.nlm.nih.gov/pubmed/36721452
http://dx.doi.org/10.18502/ijm.v14i6.11263
Descripción
Sumario:BACKGROUND AND OBJECTIVES: Bioactive secondary metabolites are the products of microbial communities adapting to environmental challenges, which have yet remained anonymous. As a result of demands in the pharmaceutical, agricultural, and food industries, microbial metabolites should be investigated. The most substantial sources of secondary metabolites are Streptomyces strains and are potential candidates for bioactive compound production. So, we used genome mining and bioinformatics to predict the isolates secondary metabolites, biosynthesis, and potential pharmaceuticals. MATERIALS AND METHODS: This is a bioinformatics part of our previous experimental research. Here, we aimed to inspect the underlying secondary metabolite properties of 20 phylogenetically diverse Streptomyces species of saline soil by a rationalized computational workflow by several software tools. We examined the Metabolites’ cytotoxicity and antibacterial effects using the MTT assay and plate count technique, respectively. RESULTS: Among Streptomyces species, three were selected for genome mining and predicted novel secondary metabolites and potential drug abilities. All 11 metabolites were cytotoxic to A549, but ectoine (p≤0.5) and geosmin (p≤0.001) significantly operated as an anti-cancer drug. Metabolites of oxytetracycline and phosphinothricin (p≤0.001), 4Z-annimycin and geosmin (p≤0.01), and ectoine (p≤0.5) revealed significant antibacterial activity. CONCLUSION: Of all the 11 compounds investigated, annimycin, geosmin, phosphinothricin, and ectoine had antimicrobial properties, but geosmin also showed very significant anti-cancer properties.