Cargando…
Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images
Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an oppor...
Autores principales: | Lewis, John, Cha, Young-Jin, Kim, Jongho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867760/ https://www.ncbi.nlm.nih.gov/pubmed/36681776 http://dx.doi.org/10.1038/s41598-023-28530-2 |
Ejemplares similares
-
Automatic Polyp Segmentation in Colonoscopy Images Using a Modified Deep Convolutional Encoder-Decoder Architecture
por: Eu, Chin Yii, et al.
Publicado: (2021) -
Weakly Supervised Polyp Segmentation in Colonoscopy Images Using Deep Neural Networks
por: Chen, Siwei, et al.
Publicado: (2022) -
Efficient attention-based deep encoder and decoder for automatic crack segmentation
por: Kang, Dong H, et al.
Publicado: (2021) -
DRI-Net: segmentation of polyp in colonoscopy images using dense residual-inception network
por: Lan, Xiaoke, et al.
Publicado: (2023) -
EDPNet: An Encoding–Decoding Network with Pyramidal Representation for Semantic Image Segmentation
por: Chen, Dong, et al.
Publicado: (2023)