Cargando…
Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation
Iterative reconstruction has demonstrated superior performance in medical imaging under compressed, sparse, and limited-view sensing scenarios. However, iterative reconstruction algorithms are slow to converge and rely heavily on hand-crafted parameters to achieve good performance. Many iterations a...
Autores principales: | Hsu, Ko-Tsung, Guan, Steven, Chitnis, Parag V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867977/ https://www.ncbi.nlm.nih.gov/pubmed/36700132 http://dx.doi.org/10.1016/j.pacs.2023.100452 |
Ejemplares similares
-
Comparing Deep Learning Frameworks for Photoacoustic Tomography Image Reconstruction
por: Hsu, Ko-Tsung, et al.
Publicado: (2021) -
Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning
por: Guan, Steven, et al.
Publicado: (2020) -
Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration
por: Song, Xianlin, et al.
Publicado: (2023) -
Pixel-wise reconstruction of tissue absorption coefficients in photoacoustic tomography using a non-segmentation iterative method
por: Zhang, Shuangyang, et al.
Publicado: (2022) -
Perspective on fast-evolving photoacoustic tomography
por: Yao, Junjie, et al.
Publicado: (2021)