Cargando…
Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomics
OBJECTIVE: Increased risk of stroke is highly associated with psychiatric disorders. We aimed to conduct the machine learning model based on multi-modal magnetic resonance imaging (MRI) radiomics predicting the prognosis of ischemic stroke. METHODS: This study retrospectively analyzed 148 patients w...
Autores principales: | Yu, Huan, Wang, Zhenwei, Sun, Yiqing, Bo, Wenwei, Duan, Kai, Song, Chunhua, Hu, Yi, Zhou, Jie, Mu, Zizhang, Wu, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868394/ https://www.ncbi.nlm.nih.gov/pubmed/36699499 http://dx.doi.org/10.3389/fpsyt.2022.1105496 |
Ejemplares similares
-
Dynamic Tracking of State Anxiety via Multi-Modal Data and Machine Learning
por: Ding, Yue, et al.
Publicado: (2022) -
Prediction of recurrence of ischemic stroke within 1 year of discharge based on machine learning MRI radiomics
por: Liu, Jianmo, et al.
Publicado: (2023) -
Prediction Model of Hemorrhage Transformation in Patient with Acute Ischemic Stroke Based on Multiparametric MRI Radiomics and Machine Learning
por: Meng, Yucong, et al.
Publicado: (2022) -
Contributions to auditory system conduction velocity: insights with multi-modal neuroimaging and machine learning in children with ASD and XYY syndrome
por: Berman, Jeffrey I., et al.
Publicado: (2023) -
MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome—A Systematic Review
por: Dragoș, Hanna Maria, et al.
Publicado: (2023)