Cargando…
Model-based experimental manipulation of probabilistic behavior in interpretable behavioral latent variable models
INTRODUCTION: Interpretable latent variable models that probabilistically link behavioral observations to an underlying latent process have increasingly been used to draw inferences on cognition from observed behavior. The latent process usually connects experimental variables to cognitive computati...
Autores principales: | Thome, Janine, Pinger, Mathieu, Durstewitz, Daniel, Sommer, Wolfgang H., Kirsch, Peter, Koppe, Georgia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868576/ https://www.ncbi.nlm.nih.gov/pubmed/36699538 http://dx.doi.org/10.3389/fnins.2022.1077735 |
Ejemplares similares
-
A Model Guided Approach to Evoke Homogeneous Behavior During Temporal Reward and Loss Discounting
por: Thome, Janine, et al.
Publicado: (2022) -
Comparing Discounting of Potentially Real Rewards and Losses by Means of Functional Magnetic Resonance Imaging
por: Pinger, Mathieu, et al.
Publicado: (2022) -
Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics
por: Thome, Janine, et al.
Publicado: (2021) -
Probabilistic Latent Variable Models as Nonnegative Factorizations
por: Shashanka, Madhusudana, et al.
Publicado: (2008) -
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
por: Koppe, Georgia, et al.
Publicado: (2019)