Cargando…
Structured deep embedding model to generate composite clinical indices from electronic health records for early detection of pancreatic cancer
The high-dimensionality, complexity, and irregularity of electronic health records (EHR) data create significant challenges for both simplified and comprehensive health assessments, prohibiting an efficient extraction of actionable insights by clinicians. If we can provide human decision-makers with...
Autores principales: | Park, Jiheum, Artin, Michael G., Lee, Kate E., May, Benjamin L., Park, Michael, Hur, Chin, Tatonetti, Nicholas P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868652/ https://www.ncbi.nlm.nih.gov/pubmed/36699740 http://dx.doi.org/10.1016/j.patter.2022.100636 |
Ejemplares similares
-
Quantifying the potential benefits of early detection for pancreatic cancer through a counterfactual simulation modeling analysis
por: Park, Jiheum, et al.
Publicado: (2023) -
Development and validation of a classification approach for extracting severity automatically from electronic health records
por: Boland, Mary Regina, et al.
Publicado: (2015) -
Are All Vaccines Created Equal? Using Electronic Health Records to Discover Vaccines Associated With Clinician-Coded Adverse Events
por: Boland, Mary Regina, et al.
Publicado: (2015) -
Comparative analysis, applications, and interpretation of electronic health record-based stroke phenotyping methods
por: Thangaraj, Phyllis M., et al.
Publicado: (2020) -
Columbia Open Health Data, clinical concept prevalence and co-occurrence from electronic health records
por: Ta, Casey N., et al.
Publicado: (2018)