Cargando…

Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases

The seamless integration of human disease-related mutation data into protein structures is an essential component of any attempt to correctly assess the impact of the mutation. The key step preliminary to any structural modelling is the identification of the isoforms onto which mutations should be m...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliva, Francesco, Musiani, Francesco, Giorgetti, Alejandro, De Rubeis, Silvia, Sorokina, Oksana, Armstrong, Douglas J., Carloni, Paolo, Ruggerone, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868658/
https://www.ncbi.nlm.nih.gov/pubmed/36700074
http://dx.doi.org/10.3389/fchem.2022.1059593
_version_ 1784876589448691712
author Oliva, Francesco
Musiani, Francesco
Giorgetti, Alejandro
De Rubeis, Silvia
Sorokina, Oksana
Armstrong, Douglas J.
Carloni, Paolo
Ruggerone, Paolo
author_facet Oliva, Francesco
Musiani, Francesco
Giorgetti, Alejandro
De Rubeis, Silvia
Sorokina, Oksana
Armstrong, Douglas J.
Carloni, Paolo
Ruggerone, Paolo
author_sort Oliva, Francesco
collection PubMed
description The seamless integration of human disease-related mutation data into protein structures is an essential component of any attempt to correctly assess the impact of the mutation. The key step preliminary to any structural modelling is the identification of the isoforms onto which mutations should be mapped due to there being several functionally different protein isoforms from the same gene. To handle large sets of data coming from omics techniques, this challenging task needs to be automatized. Here we present the MoNvIso (Modelling eNvironment for Isoforms) code, which identifies the most useful isoform for computational modelling, balancing the coverage of mutations of interest and the availability of templates to build a structural model of both the wild-type isoform and the related variants.
format Online
Article
Text
id pubmed-9868658
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98686582023-01-24 Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases Oliva, Francesco Musiani, Francesco Giorgetti, Alejandro De Rubeis, Silvia Sorokina, Oksana Armstrong, Douglas J. Carloni, Paolo Ruggerone, Paolo Front Chem Chemistry The seamless integration of human disease-related mutation data into protein structures is an essential component of any attempt to correctly assess the impact of the mutation. The key step preliminary to any structural modelling is the identification of the isoforms onto which mutations should be mapped due to there being several functionally different protein isoforms from the same gene. To handle large sets of data coming from omics techniques, this challenging task needs to be automatized. Here we present the MoNvIso (Modelling eNvironment for Isoforms) code, which identifies the most useful isoform for computational modelling, balancing the coverage of mutations of interest and the availability of templates to build a structural model of both the wild-type isoform and the related variants. Frontiers Media S.A. 2023-01-09 /pmc/articles/PMC9868658/ /pubmed/36700074 http://dx.doi.org/10.3389/fchem.2022.1059593 Text en Copyright © 2023 Oliva, Musiani, Giorgetti, De Rubeis, Sorokina, Armstrong, Carloni and Ruggerone. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Chemistry
Oliva, Francesco
Musiani, Francesco
Giorgetti, Alejandro
De Rubeis, Silvia
Sorokina, Oksana
Armstrong, Douglas J.
Carloni, Paolo
Ruggerone, Paolo
Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases
title Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases
title_full Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases
title_fullStr Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases
title_full_unstemmed Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases
title_short Modelling eNvironment for Isoforms (MoNvIso): A general platform to predict structural determinants of protein isoforms in genetic diseases
title_sort modelling environment for isoforms (monviso): a general platform to predict structural determinants of protein isoforms in genetic diseases
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868658/
https://www.ncbi.nlm.nih.gov/pubmed/36700074
http://dx.doi.org/10.3389/fchem.2022.1059593
work_keys_str_mv AT olivafrancesco modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases
AT musianifrancesco modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases
AT giorgettialejandro modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases
AT derubeissilvia modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases
AT sorokinaoksana modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases
AT armstrongdouglasj modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases
AT carlonipaolo modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases
AT ruggeronepaolo modellingenvironmentforisoformsmonvisoageneralplatformtopredictstructuraldeterminantsofproteinisoformsingeneticdiseases