Cargando…

Redox proteomics and structural analyses provide insightful implications for additional non-catalytic thiol-disulfide motifs in PDIs

Protein disulfide isomerases (PDIs) catalyze redox reactions that reduce, oxidize, or isomerize disulfide bonds and act as chaperones of proteins as they fold. The characteristic features of PDIs are the presence of one or more catalytic thioredoxin (TRX)-like domains harboring typical CXXC catalyti...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuervo, Natalia Zamorano, Grandvaux, Nathalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868663/
https://www.ncbi.nlm.nih.gov/pubmed/36567215
http://dx.doi.org/10.1016/j.redox.2022.102583
Descripción
Sumario:Protein disulfide isomerases (PDIs) catalyze redox reactions that reduce, oxidize, or isomerize disulfide bonds and act as chaperones of proteins as they fold. The characteristic features of PDIs are the presence of one or more catalytic thioredoxin (TRX)-like domains harboring typical CXXC catalytic motifs responsible for redox reactions, as well as non-catalytic TRX-like domain. As increasing attention is paid to oxidative post-translational modifications of cysteines (Cys ox-PTMs) with the recognition that they control cellular signaling, strategies to identify sites of Cys ox-PTM by redox proteomics have been optimized. Exploration of an available Cys redoxome dataset supported by modeled structure provided arguments for the existence of an additional non-catalytic thiol-disulfide motif, distinct from those contained in the TRX type patterns, typical of PDIAs. Further structural analysis of PDIA3 and 6 allows us to consider the possibility that this hypothesis could be extended to other members of PDI. These elements invite future studies to decipher the exact role of these non-catalytic thiol-disulfide motifs in the functions of PDIs. Strategies that would allow to validate this hypothesis are discussed.