Cargando…
Self-supervised graph representation learning integrates multiple molecular networks and decodes gene-disease relationships
Leveraging molecular networks to discover disease-relevant modules is a long-standing challenge. With the accumulation of interactomes, there is a pressing need for powerful computational approaches to handle the inevitable noise and context-specific nature of biological networks. Here, we introduce...
Autores principales: | Wang, Yi, Sun, Zijun, He, Qiushun, Li, Jiwei, Ni, Ming, Yang, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868676/ https://www.ncbi.nlm.nih.gov/pubmed/36699743 http://dx.doi.org/10.1016/j.patter.2022.100651 |
Ejemplares similares
-
Hierarchical Molecular Graph Self-Supervised Learning for property prediction
por: Zang, Xuan, et al.
Publicado: (2023) -
Graph Multihead Attention Pooling with Self-Supervised Learning
por: Wang, Yu, et al.
Publicado: (2022) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021) -
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022) -
Graph representation learning
por: Hamilton, William L
Publicado: (2020)