Cargando…
An attention-based deep learning network for lung nodule malignancy discrimination
INTRODUCTION: Effective classification of lung cancers plays a vital role in lung tumor diagnosis and subsequent treatments. However, classification of benign and malignant lung nodules remains inaccurate. METHODS: This study proposes a novel multimodal attention-based 3D convolutional neural networ...
Autores principales: | Liu, Gang, Liu, Fei, Gu, Jun, Mao, Xu, Xie, XiaoTing, Sang, Jingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868837/ https://www.ncbi.nlm.nih.gov/pubmed/36699534 http://dx.doi.org/10.3389/fnins.2022.1106937 |
Ejemplares similares
-
Discriminating TB lung nodules from early lung cancers using deep learning
por: Tan, Heng, et al.
Publicado: (2022) -
Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation
por: Bruntha, P. Malin, et al.
Publicado: (2022) -
Animal Learning in a Multidimensional Discrimination Task as Explained by Dimension-Specific Allocation of Attention
por: Aluisi, Flavia, et al.
Publicado: (2018) -
Performance of Deep-Learning Solutions on Lung Nodule Malignancy Classification: A Systematic Review
por: Liang, Hailun, et al.
Publicado: (2023) -
Quantitative Imaging features Improve Discrimination of Malignancy in Pulmonary nodules
por: Balagurunathan, Yoganand, et al.
Publicado: (2019)