Cargando…
Precision detection of crop diseases based on improved YOLOv5 model
Accurate identification of crop diseases can effectively improve crop yield. Most current crop diseases present small targets, dense numbers, occlusions and similar appearance of different diseases, and the current target detection algorithms are not effective in identifying similar crop diseases. T...
Autores principales: | Zhao, Yun, Yang, Yuan, Xu, Xing, Sun, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868932/ https://www.ncbi.nlm.nih.gov/pubmed/36699833 http://dx.doi.org/10.3389/fpls.2022.1066835 |
Ejemplares similares
-
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022) -
Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model
por: Wang, Lele, et al.
Publicado: (2022) -
Precision Detection of Dense Plums in Orchards Using the Improved YOLOv4 Model
por: Wang, Lele, et al.
Publicado: (2022) -
Detection method of wheat spike improved YOLOv5s based on the attention mechanism
por: Zang, Hecang, et al.
Publicado: (2022) -
Tomato brown rot disease detection using improved YOLOv5 with attention mechanism
por: Liu, Jun, et al.
Publicado: (2023)