Cargando…
Early-stage fusion of EEG and fNIRS improves classification of motor imagery
INTRODUCTION: Many research papers have reported successful implementation of hybrid brain-computer interfaces by complementarily combining EEG and fNIRS, to improve classification performance. However, modality or feature fusion of EEG and fNIRS was usually designed for specific user cases, which w...
Autores principales: | Li, Yang, Zhang, Xin, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869134/ https://www.ncbi.nlm.nih.gov/pubmed/36699533 http://dx.doi.org/10.3389/fnins.2022.1062889 |
Ejemplares similares
-
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Hybrid fNIRS-EEG based classification of auditory and visual perception processes
por: Putze, Felix, et al.
Publicado: (2014) -
Amplitude of fNIRS Resting-State Global Signal Is Related to EEG Vigilance Measures: A Simultaneous fNIRS and EEG Study
por: Chen, Yuxuan, et al.
Publicado: (2020) -
Suppressing Systemic Interference in fNIRS Monitoring of the Hemodynamic Cortical Response to Motor Execution and Imagery
por: Wu, Shijing, et al.
Publicado: (2018)