Cargando…

Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device

[Image: see text] A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rend...

Descripción completa

Detalles Bibliográficos
Autores principales: Corley-Wiciak, Cedric, Richter, Carsten, Zoellner, Marvin H., Zaitsev, Ignatii, Manganelli, Costanza L., Zatterin, Edoardo, Schülli, Tobias U., Corley-Wiciak, Agnieszka A., Katzer, Jens, Reichmann, Felix, Klesse, Wolfgang M., Hendrickx, Nico W., Sammak, Amir, Veldhorst, Menno, Scappucci, Giordano, Virgilio, Michele, Capellini, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869329/
https://www.ncbi.nlm.nih.gov/pubmed/36598897
http://dx.doi.org/10.1021/acsami.2c17395
_version_ 1784876748620431360
author Corley-Wiciak, Cedric
Richter, Carsten
Zoellner, Marvin H.
Zaitsev, Ignatii
Manganelli, Costanza L.
Zatterin, Edoardo
Schülli, Tobias U.
Corley-Wiciak, Agnieszka A.
Katzer, Jens
Reichmann, Felix
Klesse, Wolfgang M.
Hendrickx, Nico W.
Sammak, Amir
Veldhorst, Menno
Scappucci, Giordano
Virgilio, Michele
Capellini, Giovanni
author_facet Corley-Wiciak, Cedric
Richter, Carsten
Zoellner, Marvin H.
Zaitsev, Ignatii
Manganelli, Costanza L.
Zatterin, Edoardo
Schülli, Tobias U.
Corley-Wiciak, Agnieszka A.
Katzer, Jens
Reichmann, Felix
Klesse, Wolfgang M.
Hendrickx, Nico W.
Sammak, Amir
Veldhorst, Menno
Scappucci, Giordano
Virgilio, Michele
Capellini, Giovanni
author_sort Corley-Wiciak, Cedric
collection PubMed
description [Image: see text] A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10(–4) and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10(–4) at cryogenic temperature. The longer-ranged fluctuations are of the 10(–3) order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.
format Online
Article
Text
id pubmed-9869329
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-98693292023-01-24 Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device Corley-Wiciak, Cedric Richter, Carsten Zoellner, Marvin H. Zaitsev, Ignatii Manganelli, Costanza L. Zatterin, Edoardo Schülli, Tobias U. Corley-Wiciak, Agnieszka A. Katzer, Jens Reichmann, Felix Klesse, Wolfgang M. Hendrickx, Nico W. Sammak, Amir Veldhorst, Menno Scappucci, Giordano Virgilio, Michele Capellini, Giovanni ACS Appl Mater Interfaces [Image: see text] A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10(–4) and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10(–4) at cryogenic temperature. The longer-ranged fluctuations are of the 10(–3) order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 μeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology. American Chemical Society 2023-01-04 /pmc/articles/PMC9869329/ /pubmed/36598897 http://dx.doi.org/10.1021/acsami.2c17395 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Corley-Wiciak, Cedric
Richter, Carsten
Zoellner, Marvin H.
Zaitsev, Ignatii
Manganelli, Costanza L.
Zatterin, Edoardo
Schülli, Tobias U.
Corley-Wiciak, Agnieszka A.
Katzer, Jens
Reichmann, Felix
Klesse, Wolfgang M.
Hendrickx, Nico W.
Sammak, Amir
Veldhorst, Menno
Scappucci, Giordano
Virgilio, Michele
Capellini, Giovanni
Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
title Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
title_full Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
title_fullStr Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
title_full_unstemmed Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
title_short Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
title_sort nanoscale mapping of the 3d strain tensor in a germanium quantum well hosting a functional spin qubit device
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869329/
https://www.ncbi.nlm.nih.gov/pubmed/36598897
http://dx.doi.org/10.1021/acsami.2c17395
work_keys_str_mv AT corleywiciakcedric nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT richtercarsten nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT zoellnermarvinh nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT zaitsevignatii nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT manganellicostanzal nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT zatterinedoardo nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT schullitobiasu nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT corleywiciakagnieszkaa nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT katzerjens nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT reichmannfelix nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT klessewolfgangm nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT hendrickxnicow nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT sammakamir nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT veldhorstmenno nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT scappuccigiordano nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT virgiliomichele nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice
AT capellinigiovanni nanoscalemappingofthe3dstraintensorinagermaniumquantumwellhostingafunctionalspinqubitdevice