Cargando…

Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure

The electrical transport properties of SnO(2)(TiO(2))/MAPbI(3) (MA = CH(3)NH(3)(+)) heterojunction interfaces are investigated from ambient pressure to 20 GPa, and the transport properties are calculated by physical parameters such as trap energy density, binding energy, and charge transfer driving...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuqiang, Li, Yuhong, Zhang, Qiang, Liu, Xiaofeng, Li, Yuanjing, Xiao, Ningru, Ning, Pingfan, Wang, Jingjing, Zhang, Jianxin, Liu, Hongwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869466/
https://www.ncbi.nlm.nih.gov/pubmed/36756422
http://dx.doi.org/10.1039/d2ra08143a
_version_ 1784876774575833088
author Li, Yuqiang
Li, Yuhong
Zhang, Qiang
Liu, Xiaofeng
Li, Yuanjing
Xiao, Ningru
Ning, Pingfan
Wang, Jingjing
Zhang, Jianxin
Liu, Hongwei
author_facet Li, Yuqiang
Li, Yuhong
Zhang, Qiang
Liu, Xiaofeng
Li, Yuanjing
Xiao, Ningru
Ning, Pingfan
Wang, Jingjing
Zhang, Jianxin
Liu, Hongwei
author_sort Li, Yuqiang
collection PubMed
description The electrical transport properties of SnO(2)(TiO(2))/MAPbI(3) (MA = CH(3)NH(3)(+)) heterojunction interfaces are investigated from ambient pressure to 20 GPa, and the transport properties are calculated by physical parameters such as trap energy density, binding energy, and charge transfer driving force and defect. Based on the partial density of states (PDOS) of the SnO(2)/MAPbI(3) heterojunction interface MAI-termination and PbI(2)-termination, greater charge transfer driving force and higher binding energy are observed, obviously showing the SnO(2)-based heterojunction is more stable. The SnO(2)/MAPbI(3) heterojunction interface possesses stronger electrical transport ability and is less prone to capture electrons compared with the TiO(2)/MAPbI(3) heterojunction interface. The differential charge density spectrum shows that the density is lower in the trap energy level of SnO(2)/MAPbI(3), whilst the effect of the charge transfer defect is weaker owing to the trap energy level only existing in SnO(2). The SnO(2)/MAPbI(3) heterostructure interface is less prone to capture electrons. The greater electron concentration difference is attributed to oxygen vacancy (Vo(0)) in the SnO-like environment, resulting in superior electron transport ability compared with the TiO-like environment.
format Online
Article
Text
id pubmed-9869466
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-98694662023-02-07 Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure Li, Yuqiang Li, Yuhong Zhang, Qiang Liu, Xiaofeng Li, Yuanjing Xiao, Ningru Ning, Pingfan Wang, Jingjing Zhang, Jianxin Liu, Hongwei RSC Adv Chemistry The electrical transport properties of SnO(2)(TiO(2))/MAPbI(3) (MA = CH(3)NH(3)(+)) heterojunction interfaces are investigated from ambient pressure to 20 GPa, and the transport properties are calculated by physical parameters such as trap energy density, binding energy, and charge transfer driving force and defect. Based on the partial density of states (PDOS) of the SnO(2)/MAPbI(3) heterojunction interface MAI-termination and PbI(2)-termination, greater charge transfer driving force and higher binding energy are observed, obviously showing the SnO(2)-based heterojunction is more stable. The SnO(2)/MAPbI(3) heterojunction interface possesses stronger electrical transport ability and is less prone to capture electrons compared with the TiO(2)/MAPbI(3) heterojunction interface. The differential charge density spectrum shows that the density is lower in the trap energy level of SnO(2)/MAPbI(3), whilst the effect of the charge transfer defect is weaker owing to the trap energy level only existing in SnO(2). The SnO(2)/MAPbI(3) heterostructure interface is less prone to capture electrons. The greater electron concentration difference is attributed to oxygen vacancy (Vo(0)) in the SnO-like environment, resulting in superior electron transport ability compared with the TiO-like environment. The Royal Society of Chemistry 2023-01-23 /pmc/articles/PMC9869466/ /pubmed/36756422 http://dx.doi.org/10.1039/d2ra08143a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Li, Yuqiang
Li, Yuhong
Zhang, Qiang
Liu, Xiaofeng
Li, Yuanjing
Xiao, Ningru
Ning, Pingfan
Wang, Jingjing
Zhang, Jianxin
Liu, Hongwei
Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure
title Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure
title_full Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure
title_fullStr Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure
title_full_unstemmed Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure
title_short Electrical transport properties of TiO(2)/MAPbI(3) and SnO(2)/MAPbI(3) heterojunction interfaces under high pressure
title_sort electrical transport properties of tio(2)/mapbi(3) and sno(2)/mapbi(3) heterojunction interfaces under high pressure
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869466/
https://www.ncbi.nlm.nih.gov/pubmed/36756422
http://dx.doi.org/10.1039/d2ra08143a
work_keys_str_mv AT liyuqiang electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT liyuhong electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT zhangqiang electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT liuxiaofeng electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT liyuanjing electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT xiaoningru electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT ningpingfan electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT wangjingjing electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT zhangjianxin electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure
AT liuhongwei electricaltransportpropertiesoftio2mapbi3andsno2mapbi3heterojunctioninterfacesunderhighpressure