Cargando…
Classification of COVID-19 from community-acquired pneumonia: Boosting the performance with capsule network and maximum intensity projection image of CT scans
BACKGROUND: The coronavirus disease 2019 (COVID-19) and community-acquired pneumonia (CAP) present a high degree of similarity in chest computed tomography (CT) images. Therefore, a procedure for accurately and automatically distinguishing between them is crucial. METHODS: A deep learning method for...
Autores principales: | Wu, Yanan, Qi, Qianqian, Qi, Shouliang, Yang, Liming, Wang, Hanlin, Yu, Hui, Li, Jianpeng, Wang, Gang, Zhang, Ping, Liang, Zhenyu, Chen, Rongchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869624/ https://www.ncbi.nlm.nih.gov/pubmed/36738705 http://dx.doi.org/10.1016/j.compbiomed.2023.106567 |
Ejemplares similares
-
Fully automatic pipeline of convolutional neural networks and capsule networks to distinguish COVID-19 from community-acquired pneumonia via CT images
por: Qi, Qianqian, et al.
Publicado: (2022) -
DR-MIL: deep represented multiple instance learning distinguishes COVID-19 from community-acquired pneumonia in CT images
por: Qi, Shouliang, et al.
Publicado: (2021) -
Use of combined maximum and minimum intensity projections to determine internal target volume in 4-dimensional CT scans for hepatic malignancies
por: Liu, Jin, et al.
Publicado: (2012) -
Evaluation of grouped capsule network for intracranial hemorrhage segmentation in CT scans
por: Wang, Lingying, et al.
Publicado: (2023) -
Detail-Oriented Capsule Network for classification of CT scan images performing the detection of COVID-19
por: Modi, Shraddha, et al.
Publicado: (2023)