Cargando…
An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer
BACKGROUND: Accurate pathological diagnosis of invasion depth and histologic grade is key for clinical management in patients with bladder cancer (BCa), but it is labour-intensive, experience-dependent and subject to interobserver variability. Here, we aimed to develop a pathological artificial inte...
Autores principales: | Pan, Jiexin, Hong, Guibin, Zeng, Hong, Liao, Chengxiao, Li, Huarun, Yao, Yuhui, Gan, Qinghua, Wang, Yun, Wu, Shaoxu, Lin, Tianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869632/ https://www.ncbi.nlm.nih.gov/pubmed/36691055 http://dx.doi.org/10.1186/s12967-023-03888-z |
Ejemplares similares
-
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis
por: Shen, Zefeng, et al.
Publicado: (2022) -
Preparing Data for Artificial Intelligence in Pathology with Clinical-Grade Performance
por: Yang, Yuanqing, et al.
Publicado: (2023) -
Artificial Intelligence Reveals Distinct Prognostic Subgroups of Muscle-Invasive Bladder Cancer on Histology Images
por: Eminaga, Okyaz, et al.
Publicado: (2023) -
Artificial Intelligence in Pathology
por: Chang, Hye Yoon, et al.
Publicado: (2019) -
Computed tomography and magnetic resonance imaging evaluation of pelvic lymph node metastasis in bladder cancer
por: Li, Yong, et al.
Publicado: (2018)