Cargando…
Prediction of drug side effects with transductive matrix co-completion
MOTIVATION: Side effects of drugs could cause severe health problems and the failure of drug development. Drug–target interactions are the basis for side effect production and are important for side effect prediction. However, the information on the known targets of drugs is incomplete. Furthermore,...
Autores principales: | Liang, Xujun, Fu, Ying, Qu, Lingzhi, Zhang, Pengfei, Chen, Yongheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869719/ https://www.ncbi.nlm.nih.gov/pubmed/36655793 http://dx.doi.org/10.1093/bioinformatics/btad006 |
Ejemplares similares
-
Learning important features from multi-view data to predict drug side effects
por: Liang, Xujun, et al.
Publicado: (2019) -
Drug repositioning via matrix completion with multi‐view side information
por: Hao, Yunda, et al.
Publicado: (2019) -
Predicting the side effects of drugs using matrix factorization on spontaneous reporting database
por: Fukuto, Kohei, et al.
Publicado: (2021) -
Predicting adverse side effects of drugs
por: Huang, Liang-Chin, et al.
Publicado: (2011) -
MCMDA: Matrix completion for MiRNA-disease association prediction
por: Li, Jian-Qiang, et al.
Publicado: (2017)