Cargando…
Improving the Polarity of Text through word2vec Embedding for Primary Classical Arabic Sentiment Analysis
Over the past decade, Sentiment analysis has attracted significant researcher attention. Despite a huge number of studies in this field, Sentiment analysis of authors’ books (classical Arabic) with extracting the embedding features has not yet been done. The recent feature extraction of Arabic text...
Autores principales: | Aoumeur, Nour Elhouda, Li, Zhiyong, Alshari, Eissa M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869815/ https://www.ncbi.nlm.nih.gov/pubmed/36714004 http://dx.doi.org/10.1007/s11063-022-11111-1 |
Ejemplares similares
-
Specialists, Scientists, and Sentiments: Word2Vec and Doc2Vec in Analysis of Scientific and Medical Texts
por: Chen, Qufei, et al.
Publicado: (2021) -
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
subs2vec: Word embeddings from subtitles in 55 languages
por: van Paridon, Jeroen, et al.
Publicado: (2020) -
Word2Vec inversion and traditional text classifiers for phenotyping lupus
por: Turner, Clayton A., et al.
Publicado: (2017) -
Sentiment Thesaurus, Synset and Word2Vec Based Improvement in Bigram Model for Classifying Product Reviews
por: Poomagal, S., et al.
Publicado: (2022)