Cargando…

Prediction of measured GFR after living kidney donation from pre-donation parameters

BACKGROUND: One of the challenges in living kidney donor screening is to estimate remaining kidney function after donation. Here we developed a new model to predict post-donation measured glomerular filtration rate (mGFR) from pre-donation serum creatinine, age and sex. METHODS: In the prospective d...

Descripción completa

Detalles Bibliográficos
Autores principales: van Londen, Marco, van der Weijden, Jessica, Niznik, Robert S, Mullan, Aidan F, Bakker, Stephan J L, Berger, Stefan P, Nolte, Ilja M, Sanders, Jan-Stephan F, Navis, Gerjan, Rule, Andrew D, de Borst, Martin H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869859/
https://www.ncbi.nlm.nih.gov/pubmed/35731584
http://dx.doi.org/10.1093/ndt/gfac202
_version_ 1784876856432918528
author van Londen, Marco
van der Weijden, Jessica
Niznik, Robert S
Mullan, Aidan F
Bakker, Stephan J L
Berger, Stefan P
Nolte, Ilja M
Sanders, Jan-Stephan F
Navis, Gerjan
Rule, Andrew D
de Borst, Martin H
author_facet van Londen, Marco
van der Weijden, Jessica
Niznik, Robert S
Mullan, Aidan F
Bakker, Stephan J L
Berger, Stefan P
Nolte, Ilja M
Sanders, Jan-Stephan F
Navis, Gerjan
Rule, Andrew D
de Borst, Martin H
author_sort van Londen, Marco
collection PubMed
description BACKGROUND: One of the challenges in living kidney donor screening is to estimate remaining kidney function after donation. Here we developed a new model to predict post-donation measured glomerular filtration rate (mGFR) from pre-donation serum creatinine, age and sex. METHODS: In the prospective development cohort (TransplantLines, n = 511), several prediction models were constructed and tested for accuracy, precision and predictive capacity for short- and long-term post-donation (125)I-iothalamate mGFR. The model with optimal performance was further tested in specific high-risk subgroups (pre-donation eGFR <90 mL/min/1.73 m(2), a declining 5-year post-donation mGFR slope or age >65 years) and validated in internal (n = 509) and external (Mayo Clinic, n = 1087) cohorts. RESULTS: In the development cohort, pre-donation estimated GFR (eGFR) was 86 ± 14 mL/min/1.73 m(2) and post-donation mGFR was 64 ± 11 mL/min/1.73 m(2). Donors with a pre-donation eGFR ≥90 mL/min/1.73 m(2) (present in 43%) had a mean post-donation mGFR of 69 ± 10 mL/min/1.73 m(2) and 5% of these donors reached an mGFR <55 mL/min/1.73 m(2). A model using pre-donation serum creatinine, age and sex performed optimally, predicting mGFR with good accuracy (mean bias 2.56 mL/min/1.73 m(2), R(2) = 0.29, root mean square error = 11.61) and precision [bias interquartile range (IQR) 14 mL/min/1.73 m(2)] in the external validation cohort. This model also performed well in donors with pre-donation eGFR <90 mL/min/1.73 m(2) [bias 0.35 mL/min/1.73 m(2) (IQR 10)], in donors with a negative post-donation mGFR slope [bias 4.75 mL/min/1.73 m(2) (IQR 13)] and in donors >65 years of age [bias 0.003 mL/min/1.73 m(2) (IQR 9)]. CONCLUSIONS: We developed a novel post-donation mGFR prediction model based on pre-donation serum creatinine, age and sex.
format Online
Article
Text
id pubmed-9869859
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98698592023-01-23 Prediction of measured GFR after living kidney donation from pre-donation parameters van Londen, Marco van der Weijden, Jessica Niznik, Robert S Mullan, Aidan F Bakker, Stephan J L Berger, Stefan P Nolte, Ilja M Sanders, Jan-Stephan F Navis, Gerjan Rule, Andrew D de Borst, Martin H Nephrol Dial Transplant Original Article BACKGROUND: One of the challenges in living kidney donor screening is to estimate remaining kidney function after donation. Here we developed a new model to predict post-donation measured glomerular filtration rate (mGFR) from pre-donation serum creatinine, age and sex. METHODS: In the prospective development cohort (TransplantLines, n = 511), several prediction models were constructed and tested for accuracy, precision and predictive capacity for short- and long-term post-donation (125)I-iothalamate mGFR. The model with optimal performance was further tested in specific high-risk subgroups (pre-donation eGFR <90 mL/min/1.73 m(2), a declining 5-year post-donation mGFR slope or age >65 years) and validated in internal (n = 509) and external (Mayo Clinic, n = 1087) cohorts. RESULTS: In the development cohort, pre-donation estimated GFR (eGFR) was 86 ± 14 mL/min/1.73 m(2) and post-donation mGFR was 64 ± 11 mL/min/1.73 m(2). Donors with a pre-donation eGFR ≥90 mL/min/1.73 m(2) (present in 43%) had a mean post-donation mGFR of 69 ± 10 mL/min/1.73 m(2) and 5% of these donors reached an mGFR <55 mL/min/1.73 m(2). A model using pre-donation serum creatinine, age and sex performed optimally, predicting mGFR with good accuracy (mean bias 2.56 mL/min/1.73 m(2), R(2) = 0.29, root mean square error = 11.61) and precision [bias interquartile range (IQR) 14 mL/min/1.73 m(2)] in the external validation cohort. This model also performed well in donors with pre-donation eGFR <90 mL/min/1.73 m(2) [bias 0.35 mL/min/1.73 m(2) (IQR 10)], in donors with a negative post-donation mGFR slope [bias 4.75 mL/min/1.73 m(2) (IQR 13)] and in donors >65 years of age [bias 0.003 mL/min/1.73 m(2) (IQR 9)]. CONCLUSIONS: We developed a novel post-donation mGFR prediction model based on pre-donation serum creatinine, age and sex. Oxford University Press 2022-06-22 /pmc/articles/PMC9869859/ /pubmed/35731584 http://dx.doi.org/10.1093/ndt/gfac202 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the ERA. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Original Article
van Londen, Marco
van der Weijden, Jessica
Niznik, Robert S
Mullan, Aidan F
Bakker, Stephan J L
Berger, Stefan P
Nolte, Ilja M
Sanders, Jan-Stephan F
Navis, Gerjan
Rule, Andrew D
de Borst, Martin H
Prediction of measured GFR after living kidney donation from pre-donation parameters
title Prediction of measured GFR after living kidney donation from pre-donation parameters
title_full Prediction of measured GFR after living kidney donation from pre-donation parameters
title_fullStr Prediction of measured GFR after living kidney donation from pre-donation parameters
title_full_unstemmed Prediction of measured GFR after living kidney donation from pre-donation parameters
title_short Prediction of measured GFR after living kidney donation from pre-donation parameters
title_sort prediction of measured gfr after living kidney donation from pre-donation parameters
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869859/
https://www.ncbi.nlm.nih.gov/pubmed/35731584
http://dx.doi.org/10.1093/ndt/gfac202
work_keys_str_mv AT vanlondenmarco predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT vanderweijdenjessica predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT niznikroberts predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT mullanaidanf predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT bakkerstephanjl predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT bergerstefanp predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT nolteiljam predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT sandersjanstephanf predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT navisgerjan predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT ruleandrewd predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters
AT deborstmartinh predictionofmeasuredgfrafterlivingkidneydonationfrompredonationparameters