Cargando…

ACTN1 interacts with ITGA5 to promote cell proliferation, invasion and epithelial-mesenchymal transformation in head and neck squamous cell carcinoma

OBJECTIVE(S): The aim of this study was to detect the expression levels of α-Actinin 1 (ACTN1) and ITGA5 in HNSCC and to explore how ACTN1/ITGA5 regulated the proliferative and invasive abilities, as well as the EMT of Head and neck squamous cell carcinoma (HNSCC) cells. MATERIALS AND METHODS: The v...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Rui, Gao, Ying, Zhang, Huimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mashhad University of Medical Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869876/
https://www.ncbi.nlm.nih.gov/pubmed/36742137
http://dx.doi.org/10.22038/IJBMS.2022.67056.14703
Descripción
Sumario:OBJECTIVE(S): The aim of this study was to detect the expression levels of α-Actinin 1 (ACTN1) and ITGA5 in HNSCC and to explore how ACTN1/ITGA5 regulated the proliferative and invasive abilities, as well as the EMT of Head and neck squamous cell carcinoma (HNSCC) cells. MATERIALS AND METHODS: The viability, proliferative, invasive and migrative abilities of HNSCC cells after transfection were, in turn, detected by CCK8 assay, colony formation assay, EdU staining, transwell, as well as wound healing. E-cadherin in transfected cells was assessed utilizing immunofluorescence. RT-qPCR confirmed the transfection effect of ACTN1 and ITGA5 in HNSCC cells and the interaction between ACTN1 and ITGA5 in HNSCC cells was determined by co-immunoprecipitation (Co-IP). With Western blot application, the contents of ACTN1, ITGA5, proliferation-, invasion- and migration-related proteins were estimated. A xenograft model based on nude mice was conducted and Ki-67 content in tumor tissues was evaluated employing immunohistochemistry (IHC) staining. RESULTS: ACTN1 interacted with ITGA5. The contents of ACTN1 and ITGA5 were found to be abundant in HNSCC tissues and cells and associated with poor prognosis. ACTN1 depletion imparted suppressive impacts on cell proliferative, invasive and migrative abilities as well as EMT of HNSCC cells, which were reversed by ITGA5 overexpression. In addition, ACTN1 deficiency repressed the growth and metastasis of tumor tissues in tumor xenografts of nude mice. CONCLUSION: ACTN1 positively interacts with ITGA5 to promote proliferation, invasion and EMT of HNSCC cells. Also, ACTN1 promotes tumor growth and metastasis.