Cargando…
Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis
BACKGROUND: The vibration-induced postural reaction paradigm (VIB-PR) offers a unique way for investigating sensorimotor control mechanisms. Measures of VIB-PR are usually calculated from the whole VIB period, yet recent evidence proposed that distinctive mechanisms are likely at play between the ea...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870114/ https://www.ncbi.nlm.nih.gov/pubmed/36689435 http://dx.doi.org/10.1371/journal.pone.0280835 |
_version_ | 1784876904065531904 |
---|---|
author | Kadri, Mohamed Abdelhafid Bouchard, Emilie Lauzier, Lydiane Mecheri, Hakim Bégin, William Lavallière, Martin Massé-Alarie, Hugo da Silva, Rubens A. Beaulieu, Louis-David |
author_facet | Kadri, Mohamed Abdelhafid Bouchard, Emilie Lauzier, Lydiane Mecheri, Hakim Bégin, William Lavallière, Martin Massé-Alarie, Hugo da Silva, Rubens A. Beaulieu, Louis-David |
author_sort | Kadri, Mohamed Abdelhafid |
collection | PubMed |
description | BACKGROUND: The vibration-induced postural reaction paradigm (VIB-PR) offers a unique way for investigating sensorimotor control mechanisms. Measures of VIB-PR are usually calculated from the whole VIB period, yet recent evidence proposed that distinctive mechanisms are likely at play between the early vs. later phases of the postural reaction. OBJECTIVES: The present work verified if spatiotemporal analyses of center of pressure (COP) displacements can detect differences between these early/later phases of VIB-PR. Also, we further characterized the intra/inter-individual variability of COP measurements, since the underlying variability of VIB-PR remains largely unexplored. METHODS: Twenty young volunteers realized two experimental conditions of bipodal stance with eyes closed: (i) bilateral VIB of tibialis anterior (TIB) and (ii) Achilles’ (ACH) tendons. Each condition consisted of five trials and lasted 30 s as follows: 10 s baseline, 10 s VIB and 10 s post-VIB. Linear COP variables (antero-posterior (AP) amplitude & velocity) were computed for both VIB and post-VIB periods using the following time-windows: early 2 s, the later 8 s and the whole 10 s duration. Intra- and inter-individual variability were respectively estimated using the standard error of the measurement and the coefficient of variation. Both variability metrics were obtained using five vs. the first three trials. RESULTS: Significant contrasts were found between time-windows for both VIB and post-VIB periods. COP variables were generally higher during the early 2 s phase compared to the later 8 s phase for both TIB [mean difference between 8 s– 2 s phases: Amplitude AP = -1.11 ± 1.14 cm during VIB and -2.99 ± 1.31 during post-VIB; Velocity AP = -1.17 ± 0.86 cm/s during VIB and -3.13 ± 1.31 cm/s during post-VIB] and ACH tendons [Amplitude AP = -0.37 ± 0.98 cm during VIB and -3.41 ± 1.20 during post-VIB; Velocity AP = -0.31 ± 0.59 cm/s during VIB and -3.89 ± 1.52 cm/s during post-VIB]. Most within- and between-subject variability scores were below 30% and using three instead of five trials had no impact on variability. VIB-PR patterns were quite similar within a same person, but variable behaviors were observed between individuals during the later phase. CONCLUSION: Our study highlights the relevance of identifying and separately analyzing distinct phases within VIB-PR patterns, as well as characterizing how these patterns vary at the individual level. |
format | Online Article Text |
id | pubmed-9870114 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98701142023-01-24 Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis Kadri, Mohamed Abdelhafid Bouchard, Emilie Lauzier, Lydiane Mecheri, Hakim Bégin, William Lavallière, Martin Massé-Alarie, Hugo da Silva, Rubens A. Beaulieu, Louis-David PLoS One Research Article BACKGROUND: The vibration-induced postural reaction paradigm (VIB-PR) offers a unique way for investigating sensorimotor control mechanisms. Measures of VIB-PR are usually calculated from the whole VIB period, yet recent evidence proposed that distinctive mechanisms are likely at play between the early vs. later phases of the postural reaction. OBJECTIVES: The present work verified if spatiotemporal analyses of center of pressure (COP) displacements can detect differences between these early/later phases of VIB-PR. Also, we further characterized the intra/inter-individual variability of COP measurements, since the underlying variability of VIB-PR remains largely unexplored. METHODS: Twenty young volunteers realized two experimental conditions of bipodal stance with eyes closed: (i) bilateral VIB of tibialis anterior (TIB) and (ii) Achilles’ (ACH) tendons. Each condition consisted of five trials and lasted 30 s as follows: 10 s baseline, 10 s VIB and 10 s post-VIB. Linear COP variables (antero-posterior (AP) amplitude & velocity) were computed for both VIB and post-VIB periods using the following time-windows: early 2 s, the later 8 s and the whole 10 s duration. Intra- and inter-individual variability were respectively estimated using the standard error of the measurement and the coefficient of variation. Both variability metrics were obtained using five vs. the first three trials. RESULTS: Significant contrasts were found between time-windows for both VIB and post-VIB periods. COP variables were generally higher during the early 2 s phase compared to the later 8 s phase for both TIB [mean difference between 8 s– 2 s phases: Amplitude AP = -1.11 ± 1.14 cm during VIB and -2.99 ± 1.31 during post-VIB; Velocity AP = -1.17 ± 0.86 cm/s during VIB and -3.13 ± 1.31 cm/s during post-VIB] and ACH tendons [Amplitude AP = -0.37 ± 0.98 cm during VIB and -3.41 ± 1.20 during post-VIB; Velocity AP = -0.31 ± 0.59 cm/s during VIB and -3.89 ± 1.52 cm/s during post-VIB]. Most within- and between-subject variability scores were below 30% and using three instead of five trials had no impact on variability. VIB-PR patterns were quite similar within a same person, but variable behaviors were observed between individuals during the later phase. CONCLUSION: Our study highlights the relevance of identifying and separately analyzing distinct phases within VIB-PR patterns, as well as characterizing how these patterns vary at the individual level. Public Library of Science 2023-01-23 /pmc/articles/PMC9870114/ /pubmed/36689435 http://dx.doi.org/10.1371/journal.pone.0280835 Text en © 2023 Kadri et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kadri, Mohamed Abdelhafid Bouchard, Emilie Lauzier, Lydiane Mecheri, Hakim Bégin, William Lavallière, Martin Massé-Alarie, Hugo da Silva, Rubens A. Beaulieu, Louis-David Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis |
title | Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis |
title_full | Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis |
title_fullStr | Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis |
title_full_unstemmed | Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis |
title_short | Distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis |
title_sort | distinctive phases and variability of vibration-induced postural reactions highlighted by center of pressure analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870114/ https://www.ncbi.nlm.nih.gov/pubmed/36689435 http://dx.doi.org/10.1371/journal.pone.0280835 |
work_keys_str_mv | AT kadrimohamedabdelhafid distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT bouchardemilie distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT lauzierlydiane distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT mecherihakim distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT beginwilliam distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT lavallieremartin distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT massealariehugo distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT dasilvarubensa distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis AT beaulieulouisdavid distinctivephasesandvariabilityofvibrationinducedposturalreactionshighlightedbycenterofpressureanalysis |