Cargando…
Evaluations on supervised learning methods in the calibration of seven-hole pressure probes
Machine learning method has become a popular, convenient and efficient computing tool applied to many industries at present. Multi-hole pressure probe is an important technique widely used in flow vector measurement. It is a new attempt to integrate machine learning method into multi-hole probe meas...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870118/ https://www.ncbi.nlm.nih.gov/pubmed/36689455 http://dx.doi.org/10.1371/journal.pone.0277672 |
Sumario: | Machine learning method has become a popular, convenient and efficient computing tool applied to many industries at present. Multi-hole pressure probe is an important technique widely used in flow vector measurement. It is a new attempt to integrate machine learning method into multi-hole probe measurement. In this work, six typical supervised learning methods in scikit-learn library are selected for parameter adjustment at first. Based on the optimal parameters, a comprehensive evaluation is conducted from four aspects: prediction accuracy, prediction efficiency, feature sensitivity and robustness on the failure of some hole port. As results, random forests and K-nearest neighbors’ algorithms have the better comprehensive prediction performance. Compared with the in-house traditional algorithm, the machine learning algorithms have the great advantages in the computational efficiency and the convenience of writing code. Multi-layer perceptron and support vector machines are the most time-consuming algorithms among the six algorithms. The prediction accuracy of all the algorithms is very sensitive to the features. Using the features based on the physical knowledge can obtain a high accuracy predicted results. Finally, KNN algorithm is successfully applied to field measurements on the angle of attack of a wind turbine blades. These findings provided a new reference for the application of machine learning method in multi-hole probe calibration and measurement. |
---|