Cargando…
Classification of IHC Images of NATs With ResNet-FRP-LSTM for Predicting Survival Rates of Rectal Cancer Patients
Background: Over a decade, tissues dissected adjacent to primary tumors have been considered “normal” or healthy samples (NATs). However, NATs have recently been discovered to be distinct from both tumorous and normal tissues. The ability to predict the survival rate of cancer patients using NATs ca...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870269/ https://www.ncbi.nlm.nih.gov/pubmed/36704244 http://dx.doi.org/10.1109/JTEHM.2022.3229561 |
Ejemplares similares
-
An Optimal Stacked ResNet-BiLSTM-Based Accurate Detection and Classification of Genetic Disorders
por: Nandhini, K., et al.
Publicado: (2023) -
Prediction of Pollutant Concentration Based on Spatial–Temporal Attention, ResNet and ConvLSTM
por: Chen, Cai, et al.
Publicado: (2023) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
por: Shen, Kailai, et al.
Publicado: (2023) -
MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification
por: Huang, Xingru, et al.
Publicado: (2022)