Cargando…

Experimental feasibility study of multipurpose low-cost solar thermal device for different applications including inactivation of SARS CoV-2

This study show the experimental feasibility of the Solar thermal energy-based disinfection and inactivation of viruses, including the SARS CoV-2 from the different surfaces and utensils. A small prototype device is proposed and fabricated to serve the purpose. This device was tested in the field co...

Descripción completa

Detalles Bibliográficos
Autores principales: Sagade, Atul A., Palma-Behnke, Rodrigo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870299/
http://dx.doi.org/10.1016/j.seta.2023.103034
Descripción
Sumario:This study show the experimental feasibility of the Solar thermal energy-based disinfection and inactivation of viruses, including the SARS CoV-2 from the different surfaces and utensils. A small prototype device is proposed and fabricated to serve the purpose. This device was tested in the field conditions using cotton clothes as a material/surface/utensil to observe the heating performance of the proposed device to attain the desired temperature range and corresponding timeline of heat-based 4 and 5 log viral load reduction/inactivation protocol. A new parameter ‘Disinfection Power’ is proposed to comment on the thermal performance of the SDC. The SDC satisfactorily reached temperatures ∼75–80 °C required for the 4 and 5 log heat-based viral load reduction protocol for disinfection cycles and maintained it for the heat for desired time line of minimum 60 min for the rated load of utensils. The value of the disinfection power at mean temperature difference (25 °C in the present case) is 29.9 W. The exergy efficiency of the SDC shows variation between 12.62 % and 22.69 %. Thus, SDC offers an affordable solution to reduce the risk of spreading the virus through contact with clothes and utensils.