Cargando…
A semi-supervised learning approach with consistency regularization for tumor histopathological images analysis
INTRODUCTION: Manual inspection of histopathological images is important in clinical cancer diagnosis. Pathologists implement pathological diagnosis and prognostic evaluation through the microscopic examination of histopathological slices. This entire process is time-consuming, laborious, and challe...
Autores principales: | Jiang, Yanyun, Sui, Xiaodan, Ding, Yanhui, Xiao, Wei, Zheng, Yuanjie, Zhang, Yongxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870542/ https://www.ncbi.nlm.nih.gov/pubmed/36698401 http://dx.doi.org/10.3389/fonc.2022.1044026 |
Ejemplares similares
-
Semi-supervised learning in cancer diagnostics
por: Eckardt, Jan-Niklas, et al.
Publicado: (2022) -
A rotation based regularization method for semi-supervised learning
por: Shukla, Prashant, et al.
Publicado: (2021) -
Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine
por: Muhammad Zaly Shah, Muhammad Zafran, et al.
Publicado: (2022) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Semi‐supervised empirical Bayes group‐regularized factor regression
por: Münch, Magnus M., et al.
Publicado: (2022)