Cargando…
Targeting intracellular Neu1 for coronavirus infection treatment
There are currently no effective therapies for COVID-19 or antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vaccines appear less effective against new SARS-CoV-2 variants; thus, there is an urgent need to understand better the virulence mechanisms of SARS-CoV-2 an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870608/ https://www.ncbi.nlm.nih.gov/pubmed/36714013 http://dx.doi.org/10.1016/j.isci.2023.106037 |
Sumario: | There are currently no effective therapies for COVID-19 or antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vaccines appear less effective against new SARS-CoV-2 variants; thus, there is an urgent need to understand better the virulence mechanisms of SARS-CoV-2 and the host response to develop therapeutic agents. Herein, we show that host Neu1 regulates coronavirus replication by controlling sialylation on coronavirus nucleocapsid protein. Coronavirus nucleocapsid proteins in COVID-19 patients and in coronavirus HCoV-OC43-infected cells were heavily sialylated; this sialylation controlled the RNA-binding activity and replication of coronavirus. Neu1 overexpression increased HCoV-OC43 replication, whereas Neu1 knockdown reduced HCoV-OC43 replication. Moreover, a newly developed Neu1 inhibitor, Neu5Ac2en-OAcOMe, selectively targeted intracellular sialidase, which dramatically reduced HCoV-OC43 and SARS-CoV-2 replication in vitro and rescued mice from HCoV-OC43 infection-induced death. Our findings suggest Neu1 inhibitors could be used to limit SARS-CoV-2 replication in patients with COVID-19, making Neu1 a potential therapeutic target for COVID-19 and future coronavirus pandemics. |
---|