Cargando…
Artificial intelligence for differentiating COVID-19 from other viral pneumonias on CT: comparative analysis of different models based on quantitative and radiomic approaches
BACKGROUND: To develop a pipeline for automatic extraction of quantitative metrics and radiomic features from lung computed tomography (CT) and develop artificial intelligence (AI) models supporting differential diagnosis between coronavirus disease 2019 (COVID-19) and other viral pneumonia (non-COV...
Autores principales: | Zorzi, Giulia, Berta, Luca, Rizzetto, Francesco, De Mattia, Cristina, Felisi, Marco Maria Jacopo, Carrazza, Stefano, Nerini Molteni, Silvia, Vismara, Chiara, Scaglione, Francesco, Vanzulli, Angelo, Torresin, Alberto, Colombo, Paola Enrica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870776/ https://www.ncbi.nlm.nih.gov/pubmed/36690869 http://dx.doi.org/10.1186/s41747-022-00317-6 |
Ejemplares similares
-
ARTIFICIAL INTELLIGENCE MODELS FOR COVID-19 CLASSIFICATION: RADIOMIC FEATURES AND QUANTITATIVE ANALYSIS OF COMPUTED TOMOGRAPHY IMAGING OF VIRAL PNEUMONIA
por: Zorzi, Giulia, et al.
Publicado: (2022) -
Diagnostic Performance in Differentiating COVID-19 from Other Viral Pneumonias on CT Imaging: Multi-Reader Analysis Compared with an Artificial Intelligence-Based Model
por: Rizzetto, Francesco, et al.
Publicado: (2022) -
Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis
por: Berta, L., et al.
Publicado: (2021) -
A patient-specific approach for quantitative and automatic analysis of computed tomography images in lung disease: Application to COVID-19 patients
por: Berta, L., et al.
Publicado: (2021) -
Patient organ and effective dose estimation in CT: comparison of four software applications
por: De Mattia, Cristina, et al.
Publicado: (2020)