Cargando…

Molecular characteristics of ambient organic aerosols in Shanghai winter before and after the COVID-19 outbreak

During the global pandemic of COVID-19, the world adopted different strategies to avoid the human and economic loss, and so does China. The reduction of human activities during this time period caused reduction in PM emissions. This study adopted a HPLC-Q-TOF-MS to compare the chemical compositions...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Wen, Shi, Longbo, Li, Ling, Wang, Lina, Chen, Jianmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870803/
https://www.ncbi.nlm.nih.gov/pubmed/36702275
http://dx.doi.org/10.1016/j.scitotenv.2023.161811
Descripción
Sumario:During the global pandemic of COVID-19, the world adopted different strategies to avoid the human and economic loss, and so does China. The reduction of human activities during this time period caused reduction in PM emissions. This study adopted a HPLC-Q-TOF-MS to compare the chemical compositions of ambient aerosol samples collected in Shanghai winter before (2018, 2019) and after (2021) the COVID-19 outbreak. The identified compositions were classified into subgroups of CHO, CHN, CHON, CHONS, CHOS and CHN compounds. Results showed that CHO compounds and CHON compounds were dominating the organic compounds in ESI− and ESI+, respectively. The average percentages of CHO− compounds were 57.97 % in 2018, 58.98 % in 2019, and 43.93 % in 2021, respectively. The average percentages of CHON+ compounds were 52.74 % in 2018, 50.34 % in 2019, and 52.02 % in 2021, respectively. The proportion of aliphatic compounds increased gradually during the three years, especially in 2021, indicating that CHO compounds were less affected by aromatic precursors after the COVID-19 outbreak. The contribution of anthropogenic emissions in Shanghai was weakened compared with the previous years. In addition, there was an enhanced emission source containing hydroxyl for CHOS compound formation in 2021. The variations of atmospheric oxidation degree among the three years were not significant.