Cargando…

Owner-rated hyperactivity/impulsivity is associated with sleep efficiency in family dogs: a non-invasive EEG study

Subjective sleep disturbances are reported by humans with attention-deficit/hyperactivity disorder (ADHD). However, no consistent objective findings related to sleep disturbances led to the removal of sleep problems from ADHD diagnostic criteria. Dogs have been used as a model for human ADHD with qu...

Descripción completa

Detalles Bibliográficos
Autores principales: Carreiro, Cecília, Reicher, Vivien, Kis, Anna, Gácsi, Márta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870861/
https://www.ncbi.nlm.nih.gov/pubmed/36690703
http://dx.doi.org/10.1038/s41598-023-28263-2
Descripción
Sumario:Subjective sleep disturbances are reported by humans with attention-deficit/hyperactivity disorder (ADHD). However, no consistent objective findings related to sleep disturbances led to the removal of sleep problems from ADHD diagnostic criteria. Dogs have been used as a model for human ADHD with questionnaires validated for this purpose. Also, their sleep physiology can be measured by non-invasive methods similarly to humans. In the current study, we recorded spontaneous sleep EEG in family dogs during a laboratory session. We analyzed the association of sleep macrostructure and deep sleep (NREM) slow-wave activity (SWA) with a validated owner-rated ADHD questionnaire, assessing inattention (IA), hyperactivity/impulsivity (H/I) and total (T) scores. Higher H/I and T were associated with lower sleep efficiency and longer time awake after initial drowsiness and NREM. IA showed no associations with sleep variables. Further, no association was found between ADHD scores and SWA. Our results are in line with human studies in which poor sleep quality reported by ADHD subjects is associated with some objective EEG macrostructural parameters. This suggests that natural variation in dogs’ H/I is useful to gain a deeper insight of ADHD neural mechanisms.