Cargando…
Instantaneous Clearing of Biofilm (iCBiofilm): an optical approach to revisit bacterial and fungal biofilm imaging
Whole-biofilm imaging at single-cell resolution is necessary for system-level analysis of cellular heterogeneity, identification of key matrix component functions and response to immune cells and antimicrobials. To this end, we developed a whole-biofilm clearing and imaging method, termed instantane...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870912/ https://www.ncbi.nlm.nih.gov/pubmed/36690667 http://dx.doi.org/10.1038/s42003-022-04396-4 |
Sumario: | Whole-biofilm imaging at single-cell resolution is necessary for system-level analysis of cellular heterogeneity, identification of key matrix component functions and response to immune cells and antimicrobials. To this end, we developed a whole-biofilm clearing and imaging method, termed instantaneous clearing of biofilm (iCBiofilm). iCBiofilm is a simple, rapid, and efficient method involving the immersion of biofilm samples in a refractive index-matching medium, enabling instant whole-biofilm imaging with confocal laser scanning microscopy. We also developed non-fixing iCBiofilm, enabling live and dynamic imaging of biofilm development and actions of antimicrobials. iCBiofilm is applicable for multicolor imaging of fluorescent proteins, immunostained matrix components, and fluorescence labeled cells in biofilms with a thickness of several hundred micrometers. iCBiofilm is scalable from bacterial to fungal biofilms and can be used to observe biofilm-neutrophil interactions. iCBiofilm therefore represents an important advance for examining the dynamics and functions of biofilms and revisiting bacterial and fungal biofilm formation. |
---|