Cargando…
A machine learning approach to the development and prospective evaluation of a pediatric lung sound classification model
Auscultation, a cost-effective and non-invasive part of physical examination, is essential to diagnose pediatric respiratory disorders. Electronic stethoscopes allow transmission, storage, and analysis of lung sounds. We aimed to develop a machine learning model to classify pediatric respiratory sou...
Autores principales: | Park, Ji Soo, Kim, Kyungdo, Kim, Ji Hye, Choi, Yun Jung, Kim, Kwangsoo, Suh, Dong In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871007/ https://www.ncbi.nlm.nih.gov/pubmed/36690658 http://dx.doi.org/10.1038/s41598-023-27399-5 |
Ejemplares similares
-
Robust algorithm for arrhythmia classification in ECG using extreme learning machine
por: Kim, Jinkwon, et al.
Publicado: (2009) -
Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning
por: Kim, Yoonjoo, et al.
Publicado: (2021) -
An Optimal Approach for Heart Sound Classification Using Grid Search in Hyperparameter Optimization of Machine Learning
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Machine Learning for Automated Classification of Abnormal Lung Sounds Obtained from Public Databases: A Systematic Review
por: Garcia-Mendez, Juan P., et al.
Publicado: (2023) -
Methionyl-tRNA synthetase overexpression is associated with poor clinical outcomes in non-small cell lung cancer
por: Kim, Eun Young, et al.
Publicado: (2017)