Cargando…
A machine learning framework for discovering high entropy alloys phase formation drivers
In the past years, high entropy alloys (HEAs) witnessed great interest because of their superior properties. Phase prediction using machine learning (ML) methods was one of the main research themes in HEAs in the past three years. Although various ML-based phase prediction works exhibited high accur...
Autores principales: | Syarif, Junaidi, Elbeltagy, Mahmoud B., Nassif, Ali Bou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871219/ https://www.ncbi.nlm.nih.gov/pubmed/36704292 http://dx.doi.org/10.1016/j.heliyon.2023.e12859 |
Ejemplares similares
-
Unsupervised machine learning discovers classes in aluminium alloys
por: Bhat, Ninad, et al.
Publicado: (2023) -
Machine learning-based prediction of phases in high-entropy alloys: A data article
por: Machaka, Ronald, et al.
Publicado: (2021) -
Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
por: Hou, Shuai, et al.
Publicado: (2022) -
Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning
por: He, Zhongping, et al.
Publicado: (2022) -
Retracted: Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning
por: Neuroscience, Computational Intelligence and
Publicado: (2022)