Cargando…

Banana pseudo-stem biochar derived from slow and fast pyrolysis process

This study evaluated the properties of banana pseudo-stem (BPS) biochar derived from two different types of pyrolysis. The fast pyrolysis experiment was performed using a worktable-scale fluidized-bed reactor, while a bench-scale fixed-bed reactor was used in the slow pyrolysis experiment. The preli...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdullah, Nurhayati, Mohd Taib, Rahmad, Mohamad Aziz, Nur Syairah, Omar, Muhammad Rabie, Md Disa, Nurhafizah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871232/
https://www.ncbi.nlm.nih.gov/pubmed/36704268
http://dx.doi.org/10.1016/j.heliyon.2023.e12940
Descripción
Sumario:This study evaluated the properties of banana pseudo-stem (BPS) biochar derived from two different types of pyrolysis. The fast pyrolysis experiment was performed using a worktable-scale fluidized-bed reactor, while a bench-scale fixed-bed reactor was used in the slow pyrolysis experiment. The preliminary analysis shows that the feedstock contains 80.6 db wt% of volatile matter, 12.5 db wt% of ash and 33.6% of carbon content. Biochar yield reduces as the pyrolysis temperature elevates for both pyrolysis experiments. Fast pyrolysis yields a higher percentage of biochar (40.3%) than biochar yield obtained from the slow pyrolysis experiment (34.9 wt%) at a similar temperature of 500 °C. The evaluation of biochar derived at 500 °C shows that the biochar obtained from the slow pyrolysis process has higher carbon content, heating value, and surface area with lower ash content. Meanwhile, FESEM images show significant differences in surface morphology and the number of pores for biochar derived from fast and slow pyrolysis. These findings indicate the potential and suitability of BPS biochar derived from the slow pyrolysis process in applications such as soil amelioration and solid biofuel.