Cargando…
Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease
Stroke is a major cause of death or disability. As imaging-based patient stratification improves acute stroke therapy, dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is of major interest in image brain perfusion. However, expert-level perfusion maps require a manual or semi-man...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871486/ https://www.ncbi.nlm.nih.gov/pubmed/36703627 http://dx.doi.org/10.3389/fneur.2022.1051397 |
_version_ | 1784877184263913472 |
---|---|
author | Kossen, Tabea Madai, Vince I. Mutke, Matthias A. Hennemuth, Anja Hildebrand, Kristian Behland, Jonas Aslan, Cagdas Hilbert, Adam Sobesky, Jan Bendszus, Martin Frey, Dietmar |
author_facet | Kossen, Tabea Madai, Vince I. Mutke, Matthias A. Hennemuth, Anja Hildebrand, Kristian Behland, Jonas Aslan, Cagdas Hilbert, Adam Sobesky, Jan Bendszus, Martin Frey, Dietmar |
author_sort | Kossen, Tabea |
collection | PubMed |
description | Stroke is a major cause of death or disability. As imaging-based patient stratification improves acute stroke therapy, dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is of major interest in image brain perfusion. However, expert-level perfusion maps require a manual or semi-manual post-processing by a medical expert making the procedure time-consuming and less-standardized. Modern machine learning methods such as generative adversarial networks (GANs) have the potential to automate the perfusion map generation on an expert level without manual validation. We propose a modified pix2pix GAN with a temporal component (temp-pix2pix-GAN) that generates perfusion maps in an end-to-end fashion. We train our model on perfusion maps infused with expert knowledge to encode it into the GANs. The performance was trained and evaluated using the structural similarity index measure (SSIM) on two datasets including patients with acute stroke and the steno-occlusive disease. Our temp-pix2pix architecture showed high performance on the acute stroke dataset for all perfusion maps (mean SSIM 0.92–0.99) and good performance on data including patients with the steno-occlusive disease (mean SSIM 0.84–0.99). While clinical validation is still necessary for future studies, our results mark an important step toward automated expert-level perfusion maps and thus fast patient stratification. |
format | Online Article Text |
id | pubmed-9871486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98714862023-01-25 Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease Kossen, Tabea Madai, Vince I. Mutke, Matthias A. Hennemuth, Anja Hildebrand, Kristian Behland, Jonas Aslan, Cagdas Hilbert, Adam Sobesky, Jan Bendszus, Martin Frey, Dietmar Front Neurol Neurology Stroke is a major cause of death or disability. As imaging-based patient stratification improves acute stroke therapy, dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is of major interest in image brain perfusion. However, expert-level perfusion maps require a manual or semi-manual post-processing by a medical expert making the procedure time-consuming and less-standardized. Modern machine learning methods such as generative adversarial networks (GANs) have the potential to automate the perfusion map generation on an expert level without manual validation. We propose a modified pix2pix GAN with a temporal component (temp-pix2pix-GAN) that generates perfusion maps in an end-to-end fashion. We train our model on perfusion maps infused with expert knowledge to encode it into the GANs. The performance was trained and evaluated using the structural similarity index measure (SSIM) on two datasets including patients with acute stroke and the steno-occlusive disease. Our temp-pix2pix architecture showed high performance on the acute stroke dataset for all perfusion maps (mean SSIM 0.92–0.99) and good performance on data including patients with the steno-occlusive disease (mean SSIM 0.84–0.99). While clinical validation is still necessary for future studies, our results mark an important step toward automated expert-level perfusion maps and thus fast patient stratification. Frontiers Media S.A. 2023-01-10 /pmc/articles/PMC9871486/ /pubmed/36703627 http://dx.doi.org/10.3389/fneur.2022.1051397 Text en Copyright © 2023 Kossen, Madai, Mutke, Hennemuth, Hildebrand, Behland, Aslan, Hilbert, Sobesky, Bendszus and Frey. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Kossen, Tabea Madai, Vince I. Mutke, Matthias A. Hennemuth, Anja Hildebrand, Kristian Behland, Jonas Aslan, Cagdas Hilbert, Adam Sobesky, Jan Bendszus, Martin Frey, Dietmar Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease |
title | Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease |
title_full | Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease |
title_fullStr | Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease |
title_full_unstemmed | Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease |
title_short | Image-to-image generative adversarial networks for synthesizing perfusion parameter maps from DSC-MR images in cerebrovascular disease |
title_sort | image-to-image generative adversarial networks for synthesizing perfusion parameter maps from dsc-mr images in cerebrovascular disease |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871486/ https://www.ncbi.nlm.nih.gov/pubmed/36703627 http://dx.doi.org/10.3389/fneur.2022.1051397 |
work_keys_str_mv | AT kossentabea imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT madaivincei imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT mutkematthiasa imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT hennemuthanja imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT hildebrandkristian imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT behlandjonas imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT aslancagdas imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT hilbertadam imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT sobeskyjan imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT bendszusmartin imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease AT freydietmar imagetoimagegenerativeadversarialnetworksforsynthesizingperfusionparametermapsfromdscmrimagesincerebrovasculardisease |