Cargando…
Crop genomic selection with deep learning and environmental data: A survey
Machine learning techniques for crop genomic selections, especially for single-environment plants, are well-developed. These machine learning models, which use dense genome-wide markers to predict phenotype, routinely perform well on single-environment datasets, especially for complex traits affecte...
Autores principales: | Jubair, Sheikh, Domaratzki, Mike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871498/ https://www.ncbi.nlm.nih.gov/pubmed/36703955 http://dx.doi.org/10.3389/frai.2022.1040295 |
Ejemplares similares
-
XGSleeve: detecting sleeve incidents in well completion by using XGBoost classifier
por: Somi, Sahand, et al.
Publicado: (2023) -
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2020) -
A Survey on Human Cancer Categorization Based on Deep Learning
por: Ibrahim, Ahmad, et al.
Publicado: (2022) -
Analysis of Features Selected by a Deep Learning Model for Differential Treatment Selection in Depression
por: Mehltretter, Joseph, et al.
Publicado: (2020) -
Effects of data count and image scaling on Deep Learning training
por: Hirahara, Daisuke, et al.
Publicado: (2020)