Cargando…
Empirical comparison of deep learning methods for EEG decoding
Electroencephalography (EEG) is a technique that can be used in non-invasive brain-machine interface (BMI) systems to register brain electrical activity. The EEG signals are non-linear and non-stationary, making the decoding procedure a complex task. Deep learning techniques have been successfully a...
Autores principales: | de Oliveira, Iago Henrique, Rodrigues, Abner Cardoso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9871886/ https://www.ncbi.nlm.nih.gov/pubmed/36704007 http://dx.doi.org/10.3389/fnins.2022.1003984 |
Ejemplares similares
-
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020) -
An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding
por: Nakagome, Sho, et al.
Publicado: (2020) -
DeePay: deep learning decodes EEG to predict consumer’s willingness to pay for neuromarketing
por: Hakim, Adam, et al.
Publicado: (2023) -
A systematic comparison of deep learning methods for EEG time series analysis
por: Walther, Dominik, et al.
Publicado: (2023) -
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network
por: Chu, Yaqi, et al.
Publicado: (2018)