Cargando…
Radiogenomic association of deep MR imaging features with genomic profiles and clinical characteristics in breast cancer
BACKGROUND: It has been believed that traditional handcrafted radiomic features extracted from magnetic resonance imaging (MRI) of tumors are normally shallow and low-ordered. Recent advancement in deep learning technology shows that the high-order deep radiomic features extracted automatically from...
Autores principales: | Liu, Qian, Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872423/ https://www.ncbi.nlm.nih.gov/pubmed/36694221 http://dx.doi.org/10.1186/s40364-023-00455-y |
Ejemplares similares
-
A novel integrative computational framework for breast cancer radiogenomic biomarker discovery
por: Liu, Qian, et al.
Publicado: (2022) -
Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer
por: Liu, Qian, et al.
Publicado: (2019) -
Breast Ultrasound Microvascular Imaging and Radiogenomics
por: Park, Ah Young, et al.
Publicado: (2021) -
Radiogenomics correlation between MR imaging features and mRNA-based subtypes in lower-grade glioma
por: Liu, Zhenyin, et al.
Publicado: (2020) -
MR Fingerprinting—A Radiogenomic Marker for Diffuse Gliomas
por: Springer, Elisabeth, et al.
Publicado: (2022)