Cargando…
Effect of Model Tear Film Lipid Layer on Water Evaporation
PURPOSE: A majority of in vitro models were incapable of reproducing the evaporation resistance of tear film lipid layer (TFLL) in vivo. The purpose of this research is to develop a novel in vitro model to study the effect of TFLL on water evaporation. METHODS: A ventilated, closed-chamber, droplet...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872843/ https://www.ncbi.nlm.nih.gov/pubmed/36656568 http://dx.doi.org/10.1167/iovs.64.1.13 |
Sumario: | PURPOSE: A majority of in vitro models were incapable of reproducing the evaporation resistance of tear film lipid layer (TFLL) in vivo. The purpose of this research is to develop a novel in vitro model to study the effect of TFLL on water evaporation. METHODS: A ventilated, closed-chamber, droplet evaporimeter with a constant surface area has been invented to study the evaporation resistance of TFLL. This evaporimeter ensures a rigorous control of environmental conditions, including the temperature, relative humidity, airflow rate, surface area, and surface pressure, thus allowing for reproducible water evaporation measurements over a time period of only 5 minutes. The volumetric evaporation rate of this droplet evaporimeter is less than 2.7 µL/min, comparable to the basal tear production of healthy adults. Together with direct film imaging using atomic force microscopy (AFM), we have studied the effect of a model TFLL on water evaporation, as a function of the lipid composition and surface pressure. RESULTS: A model TFLL composed of 40% wax esters, 40% cholesteryl esters, and 20% polar lipids was capable of reducing the water evaporation rate by 11% at surface pressure 47 mN/m. AFM revealed that the model TFLL at high surface pressures consists of discrete droplets/aggregates of the nonpolar lipids residing atop a polar lipid monolayer with phase separation. CONCLUSIONS: The TFLL may resist water evaporation with a combined mechanism by increasing film compactness of the polar lipid film at the air-water surface, and, to a lesser extent, by increasing film thickness of the nonpolar lipid film. |
---|