Cargando…
Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
PURPOSE: Automatic multilabel classification of multiple fundus diseases is of importance for ophthalmologists. This study aims to design an effective multilabel classification model that can automatically classify multiple fundus diseases based on color fundus images. METHODS: We proposed a multila...
Autores principales: | Lu, Zhenzhen, Miao, Jingpeng, Dong, Jingran, Zhu, Shuyuan, Wu, Penghan, Wang, Xiaobing, Feng, Jihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872849/ https://www.ncbi.nlm.nih.gov/pubmed/36662513 http://dx.doi.org/10.1167/tvst.12.1.22 |
Ejemplares similares
-
Enhancing the robustness of vision transformer defense against adversarial attacks based on squeeze-and-excitation module
por: Chang, YouKang, et al.
Publicado: (2023) -
Attention enhanced capsule network for text classification by encoding syntactic dependency trees with graph convolutional neural network
por: Jia, Xudong, et al.
Publicado: (2022) -
A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images
por: Ali, Abder-Rahman, et al.
Publicado: (2020) -
Reconstructed SqueezeNext with C-CBAM for offline handwritten Chinese character recognition
por: Wu, Ruiqi, et al.
Publicado: (2023) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023)