Cargando…
Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases
Little is known about the genetic determinants of medication use in preventing cardiometabolic diseases. Using the Finnish nationwide drug purchase registry with follow-up since 1995, we performed genome-wide association analyses of longitudinal patterns of medication use in hyperlipidemia, hyperten...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873570/ https://www.ncbi.nlm.nih.gov/pubmed/36653479 http://dx.doi.org/10.1038/s41591-022-02122-5 |
_version_ | 1784877626927611904 |
---|---|
author | Kiiskinen, Tuomo Helkkula, Pyry Krebs, Kristi Karjalainen, Juha Saarentaus, Elmo Mars, Nina Lehisto, Arto Zhou, Wei Cordioli, Mattia Jukarainen, Sakari Rämö, Joel T. Mehtonen, Juha Veerapen, Kumar Räsänen, Markus Ruotsalainen, Sanni Maasha, Mutaamba Niiranen, Teemu Tuomi, Tiinamaija Salomaa, Veikko Kurki, Mitja Pirinen, Matti Palotie, Aarno Daly, Mark Ganna, Andrea Havulinna, Aki S. Milani, Lili Ripatti, Samuli |
author_facet | Kiiskinen, Tuomo Helkkula, Pyry Krebs, Kristi Karjalainen, Juha Saarentaus, Elmo Mars, Nina Lehisto, Arto Zhou, Wei Cordioli, Mattia Jukarainen, Sakari Rämö, Joel T. Mehtonen, Juha Veerapen, Kumar Räsänen, Markus Ruotsalainen, Sanni Maasha, Mutaamba Niiranen, Teemu Tuomi, Tiinamaija Salomaa, Veikko Kurki, Mitja Pirinen, Matti Palotie, Aarno Daly, Mark Ganna, Andrea Havulinna, Aki S. Milani, Lili Ripatti, Samuli |
author_sort | Kiiskinen, Tuomo |
collection | PubMed |
description | Little is known about the genetic determinants of medication use in preventing cardiometabolic diseases. Using the Finnish nationwide drug purchase registry with follow-up since 1995, we performed genome-wide association analyses of longitudinal patterns of medication use in hyperlipidemia, hypertension and type 2 diabetes in up to 193,933 individuals (55% women) in the FinnGen study. In meta-analyses of up to 567,671 individuals combining FinnGen with the Estonian Biobank and the UK Biobank, we discovered 333 independent loci (P < 5 × 10(–9)) associated with medication use. Fine-mapping revealed 494 95% credible sets associated with the total number of medication purchases, changes in medication combinations or treatment discontinuation, including 46 credible sets in 40 loci not associated with the underlying treatment targets. The polygenic risk scores (PRS) for cardiometabolic risk factors were strongly associated with the medication-use behavior. A medication-use enhanced multitrait PRS for coronary artery disease matched the performance of a risk factor-based multitrait coronary artery disease PRS in an independent sample (UK Biobank, n = 343,676). In summary, we demonstrate medication-based strategies for identifying cardiometabolic risk loci and provide genome-wide tools for preventing cardiovascular diseases. |
format | Online Article Text |
id | pubmed-9873570 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-98735702023-01-26 Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases Kiiskinen, Tuomo Helkkula, Pyry Krebs, Kristi Karjalainen, Juha Saarentaus, Elmo Mars, Nina Lehisto, Arto Zhou, Wei Cordioli, Mattia Jukarainen, Sakari Rämö, Joel T. Mehtonen, Juha Veerapen, Kumar Räsänen, Markus Ruotsalainen, Sanni Maasha, Mutaamba Niiranen, Teemu Tuomi, Tiinamaija Salomaa, Veikko Kurki, Mitja Pirinen, Matti Palotie, Aarno Daly, Mark Ganna, Andrea Havulinna, Aki S. Milani, Lili Ripatti, Samuli Nat Med Article Little is known about the genetic determinants of medication use in preventing cardiometabolic diseases. Using the Finnish nationwide drug purchase registry with follow-up since 1995, we performed genome-wide association analyses of longitudinal patterns of medication use in hyperlipidemia, hypertension and type 2 diabetes in up to 193,933 individuals (55% women) in the FinnGen study. In meta-analyses of up to 567,671 individuals combining FinnGen with the Estonian Biobank and the UK Biobank, we discovered 333 independent loci (P < 5 × 10(–9)) associated with medication use. Fine-mapping revealed 494 95% credible sets associated with the total number of medication purchases, changes in medication combinations or treatment discontinuation, including 46 credible sets in 40 loci not associated with the underlying treatment targets. The polygenic risk scores (PRS) for cardiometabolic risk factors were strongly associated with the medication-use behavior. A medication-use enhanced multitrait PRS for coronary artery disease matched the performance of a risk factor-based multitrait coronary artery disease PRS in an independent sample (UK Biobank, n = 343,676). In summary, we demonstrate medication-based strategies for identifying cardiometabolic risk loci and provide genome-wide tools for preventing cardiovascular diseases. Nature Publishing Group US 2023-01-18 2023 /pmc/articles/PMC9873570/ /pubmed/36653479 http://dx.doi.org/10.1038/s41591-022-02122-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kiiskinen, Tuomo Helkkula, Pyry Krebs, Kristi Karjalainen, Juha Saarentaus, Elmo Mars, Nina Lehisto, Arto Zhou, Wei Cordioli, Mattia Jukarainen, Sakari Rämö, Joel T. Mehtonen, Juha Veerapen, Kumar Räsänen, Markus Ruotsalainen, Sanni Maasha, Mutaamba Niiranen, Teemu Tuomi, Tiinamaija Salomaa, Veikko Kurki, Mitja Pirinen, Matti Palotie, Aarno Daly, Mark Ganna, Andrea Havulinna, Aki S. Milani, Lili Ripatti, Samuli Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases |
title | Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases |
title_full | Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases |
title_fullStr | Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases |
title_full_unstemmed | Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases |
title_short | Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases |
title_sort | genetic predictors of lifelong medication-use patterns in cardiometabolic diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873570/ https://www.ncbi.nlm.nih.gov/pubmed/36653479 http://dx.doi.org/10.1038/s41591-022-02122-5 |
work_keys_str_mv | AT kiiskinentuomo geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT helkkulapyry geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT krebskristi geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT karjalainenjuha geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT saarentauselmo geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT marsnina geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT lehistoarto geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT zhouwei geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT cordiolimattia geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT jukarainensakari geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT ramojoelt geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT mehtonenjuha geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT veerapenkumar geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT rasanenmarkus geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT ruotsalainensanni geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT maashamutaamba geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT niiranenteemu geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT tuomitiinamaija geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT salomaaveikko geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT kurkimitja geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT pirinenmatti geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT palotieaarno geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT dalymark geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT gannaandrea geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT havulinnaakis geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT milanilili geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases AT ripattisamuli geneticpredictorsoflifelongmedicationusepatternsincardiometabolicdiseases |