Cargando…
Inferring cancer common and specific gene networks via multi-layer joint graphical model
Cancer is a complex disease caused primarily by genetic variants. Reconstructing gene networks within tumors is essential for understanding the functional regulatory mechanisms of carcinogenesis. Advances in high-throughput sequencing technologies have provided tremendous opportunities for inferring...
Autores principales: | Chen, Yuanxiao, Zhang, Xiao-Fei, Ou-Yang, Le |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873583/ https://www.ncbi.nlm.nih.gov/pubmed/36733706 http://dx.doi.org/10.1016/j.csbj.2023.01.017 |
Ejemplares similares
-
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
por: Wu, Nuosi, et al.
Publicado: (2019) -
Importance-Penalized Joint Graphical Lasso (IPJGL): differential network inference via GGMs
por: Leng, Jiacheng, et al.
Publicado: (2021) -
Characterization inference based on joint-optimization of multi-layer semantics and deep fusion matching network
por: Zheng, Wenfeng, et al.
Publicado: (2022) -
Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm
por: Oh, Jung Hun, et al.
Publicado: (2014) -
Graphical models for inferring single molecule dynamics
por: Bronson, Jonathan E, et al.
Publicado: (2010)