Cargando…

A preliminary analysis of the variation in circulating 25-hydroxycholecalciferol concentrations in peri-partum spring-calving dairy cows

Vitamin D has a well-established role in regulating the intestinal absorption of minerals but its association with immunity has not been extensively explored in livestock. Although an optimal circulating concentration of 30 ng/ml 25-hydroxycholecalciferol (25(OH)D) is proposed for immune function, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryan, Nicholas J., Brewer, Amy, Chapwanya, Aspinas, O’Farrelly, Cliona, Williams, Erin J., Evans, Alexander C.O., Beltman, Marijke E., Meade, Kieran G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873693/
https://www.ncbi.nlm.nih.gov/pubmed/35789319
http://dx.doi.org/10.1007/s11259-022-09946-z
Descripción
Sumario:Vitamin D has a well-established role in regulating the intestinal absorption of minerals but its association with immunity has not been extensively explored in livestock. Although an optimal circulating concentration of 30 ng/ml 25-hydroxycholecalciferol (25(OH)D) is proposed for immune function, it is unknown if this vitamin D concentration is sufficient, particularly for cows under a pasture-based, spring-calving dairy production system. The objectives of this retrospective analysis were to assess circulating vitamin D concentrations in a total of 843 bio-banked serum samples from Holstein-Friesian dairy cows enrolled from 12 spring-calving, pasture-based dairy farms in Ireland. Mean 25(OH)D concentrations were 36.3 ng/ml at calving, 30.7 ng/ml at 7 days post-partum (DPP), and 38.3 ng/ml at 21 DPP. However, mean concentrations masked significant inter-farm and inter-individual variation (P < 0.05). In fact, the proportion of cows with vitamin D insufficiency of < 30 ng/ml was found to be 33.8%, 55.5% and 19.5% at each time point, respectively. In addition, 25(OH)D concentrations correlated positively with immune cell populations (monocytes and lymphocytes) and negatively with blood urea and non-esterified fatty acids (NEFA) at 7 DPP. This is the first report of 25(OH)D concentrations in pasture-based peripartum dairy cows and we show a high degree of variation across farms and between individual animals. Sub-optimal concentrations of vitamin D in some post-partum cows may predispose cattle to multiple metabolic or infectious diseases, and therefore further work is now warranted.