Cargando…
Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor
The present study evaluated efficiency of wheat straw (WS) hydrolysate obtained through fungal pre-treatment to produce ethanol and electricity in an electrochemical bioreactor. Three white rot fungi Phanerochaete chrysosporium, Phlebia floridensis and Phlebia brevispora were used to degrade WS for...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873701/ https://www.ncbi.nlm.nih.gov/pubmed/36711303 http://dx.doi.org/10.1016/j.heliyon.2023.e12951 |
_version_ | 1784877654326902784 |
---|---|
author | Shrivastava, Akansha Sharma, Rakesh Kumar |
author_facet | Shrivastava, Akansha Sharma, Rakesh Kumar |
author_sort | Shrivastava, Akansha |
collection | PubMed |
description | The present study evaluated efficiency of wheat straw (WS) hydrolysate obtained through fungal pre-treatment to produce ethanol and electricity in an electrochemical bioreactor. Three white rot fungi Phanerochaete chrysosporium, Phlebia floridensis and Phlebia brevispora were used to degrade WS for hydrolysate preparation, Lignocellulolytic enzyme production was also monitored during the pretreatment. Yeast Pichia fermentans was allowed to ferment all three hydrolysates up to 12 days. The yeast showed maximum electrochemical response as open circuit voltage (0.672 V), current density 542.42 mA m(−2), and power density of 65.09 mW m(−2) on 12th day in the hydrolysate prepared using Phlebia floridensis. Maximum ethanol production of 9.2% (w/v) was achieved on 7th day with a fermentation efficiency of about 62.1%. Further, the coulombic efficiency improved from 0.06 to 1.46% during 12 days of the experiment. Thus, the results indicated towards the possible conversion of lignocellulosic biomass into bioethanol along with bioelectricity generation. |
format | Online Article Text |
id | pubmed-9873701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98737012023-01-26 Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor Shrivastava, Akansha Sharma, Rakesh Kumar Heliyon Research Article The present study evaluated efficiency of wheat straw (WS) hydrolysate obtained through fungal pre-treatment to produce ethanol and electricity in an electrochemical bioreactor. Three white rot fungi Phanerochaete chrysosporium, Phlebia floridensis and Phlebia brevispora were used to degrade WS for hydrolysate preparation, Lignocellulolytic enzyme production was also monitored during the pretreatment. Yeast Pichia fermentans was allowed to ferment all three hydrolysates up to 12 days. The yeast showed maximum electrochemical response as open circuit voltage (0.672 V), current density 542.42 mA m(−2), and power density of 65.09 mW m(−2) on 12th day in the hydrolysate prepared using Phlebia floridensis. Maximum ethanol production of 9.2% (w/v) was achieved on 7th day with a fermentation efficiency of about 62.1%. Further, the coulombic efficiency improved from 0.06 to 1.46% during 12 days of the experiment. Thus, the results indicated towards the possible conversion of lignocellulosic biomass into bioethanol along with bioelectricity generation. Elsevier 2023-01-13 /pmc/articles/PMC9873701/ /pubmed/36711303 http://dx.doi.org/10.1016/j.heliyon.2023.e12951 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Shrivastava, Akansha Sharma, Rakesh Kumar Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor |
title | Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor |
title_full | Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor |
title_fullStr | Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor |
title_full_unstemmed | Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor |
title_short | Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor |
title_sort | conversion of lignocellulosic biomass: production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873701/ https://www.ncbi.nlm.nih.gov/pubmed/36711303 http://dx.doi.org/10.1016/j.heliyon.2023.e12951 |
work_keys_str_mv | AT shrivastavaakansha conversionoflignocellulosicbiomassproductionofbioethanolandbioelectricityusingwheatstrawhydrolysateinelectrochemicalbioreactor AT sharmarakeshkumar conversionoflignocellulosicbiomassproductionofbioethanolandbioelectricityusingwheatstrawhydrolysateinelectrochemicalbioreactor |