Cargando…
GSN synergies with actin-related transfer molecular chain to promote invasion and metastasis of HCC
BACKGROUND: Previous studies have shown that the ability of tumor cells to move and migrate is related to the molecular chain pathway mediated by actin. This study focused on the molecular mechanism of gelsolin (GSN) as an important actin-binding protein in promoting HCC invasion and metastasis. MET...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873781/ https://www.ncbi.nlm.nih.gov/pubmed/36192574 http://dx.doi.org/10.1007/s12094-022-02961-1 |
Sumario: | BACKGROUND: Previous studies have shown that the ability of tumor cells to move and migrate is related to the molecular chain pathway mediated by actin. This study focused on the molecular mechanism of gelsolin (GSN) as an important actin-binding protein in promoting HCC invasion and metastasis. METHODS: The relationship between GSN expression and clinical characteristics was observed by immunohistochemistry (IHC). In vitro and in vivo experiments confirmed the role of GSN in HCC metastasis. Dual-immunoprecipitation (IP), immunofluorescence (IF), western blotting, and the gelatinase activity assay were used to investigate the mechanism of GSN-promoting metastasis. PEX fusion proteins were used to intervene in the transfer molecular chain. RESULTS: Our study found that GSN promoted HCC invasion and metastasis through its synergistic effect with actin-related transfer molecular chain (actin-CD44-MMPs). Concretely, as an important binding molecule of actin, GSN activated MMP2 by interacting with MMP14. Furthermore, CD44 might be a key node in the above-mentioned mechanism. The use of MMP14 domain (PEX fusion protein) to competitively bind to CD44 helped to inhibit the activation of downstream MMP2. CONCLUSIONS: GSN played crucial roles in HCC metastatic process. An improved understanding of the multiple effects of GSN in HCC might facilitate a deeper appreciation of GSN as an important HCC regulator. The study identified GSN and its regulated transfer molecular chain as potential therapeutic targets for HCC. |
---|